GEORGIA DEPARTMENT OF TRANSPORTATION

GDOT Project No: NH000-0073-03(242) PI No: 714130

JBT Project No. 255717

Bridge No. 31 I-75 REVERSIBLE OVER NOONDAY CREEK

November, 2009

COBB COUNTY

DESIGN CALCULATIONS

Note 1: Georgia Department of Transportation (GDOT) terminated Contract Number TOURDPPI60072 for its convenience prior to the completion of all work under that contract and directed that the work with respect to these calculations be discontinued.

- (a) These calculations were not completed at the time of GDOT's direction and the information contained herein is not complete and/or has not been fully verified or checked. These calculations are a work-in-progress and are presented only as such.
- (b) Any user is cautioned that the use of these calculations and any related information or calculations, without access to pertinent factors and without proper regard for their purpose, could lead to erroneous conclusions.
- (c) If any such calculations or any information contained herein is used in future work efforts or any follow on design work activity, a complete confirmation of the information contained herein should be performed prior to any such use.
- (d) GTP has no responsibility for the use of this information not under its direct control.

Prepared for Georgia Transportation Partners
Atlanta, Georgia

J.B. TRIMBLE, INC. 250 Berlings Ct, 50 Same 250 Atheris, GA 30339-2002 (770) 912-1022

Purpose of Calculation

Bridge design calculations for Bridge #31 were made for costing purposes.

1. Specifications and References

AASHTO 17th Edition, 2002 GDOT Bridge Design Manual, 2008

2. Computer

Computer Type Used: PC

Operating System: Windows XP, Pentium 4, 2GB RAM (min.)

3. Computer Programs (Standard Computer Program)

Excel, Microsoft Office 2003 – JBT Calculation Spreadsheets BRLLCA, 2008 – Live Load Case Program, by GDOT BRPIER, 2008 – Pier Design and Analysis, by GDOT BRSPAN, 2008 – Simple Beam Design and Analysis, by GDOT

CALCULATION COVER SHEET

PROJEC	Т		JOB NO.			CALC NO	D. S	HEET
I-75 / I-57	5 NORTHWEST CO	RRIDOR	NH000-00	73-03(242))	BR#31	1	
SUBJEC	Τ			DIS	CIPLINE		_	
Slab Des	ign			STR	UCTURAL			
0416	OUI ATION CTATUS	DDELIMINA DV	CONFIDME	0.11	DOEDED	VOIDE	TD INICON	ADI ETE
	CULATION STATUS DESIGNATION	PRELIMINARY	CONFIRMED	501	PSEDED	VOIDE	D INCON	MPLETE
								X
		1	<u> </u>		<u> </u>	<u> </u>	•	
	COMPUTER OGRAM/TYPE	SCP	MAINFRAME	PC X	PROGRAM Exce		SION/RELEASE 2003	E NO.
		X YES NO						
		f Transportation (GDOT						-
(a) These and/or had (b) Any us factors are (c) If any a comple	e calculations were no is not been fully verifie ser is cautioned that the ind without proper regal such calculations or a te confirmation of the	r that contract and direct to completed at the time and or checked. These can use of these calculations for their purpose, county information contained her the use of this information their the use of this information.	of GDOT's dir alculations are ions and any r uld lead to erro d herein is use erein should b	ection and a work-in- elated info oneous cor ed in future e performe	I the information progress are progress are progress are progress. The conclusions are progress work effort are prior to a	ation contained are preser calculations, its or any follo	ed herein is not nted only as such without access to ow on design wo	complete h. to
Slab Desi	ign calculations are in	cluded for spans 1, 2 ar	nd 3.					
								<u> </u>
A NO	•	ation for convenience direc	tion 12	12 LAST	JCR F BY	CHECKED	APPROVED/	11/30/09 DATE
NO.	REASON	I FOR REVISION	NO. O SHEET	F SHEE	T	CHECKED	ACCEPTED	DATE
	•	DE	CORD OF RE	VISIONS		•		•

PROJECT: <u>I-75 / I-575 NORTHWEST CORRIDOR</u>
JOB NUMBER <u>NH000-0073-03(242)</u>

CALC NO. BR#31

SUBJECT:Slab DesignSHEET NO.BY:JCRDATE:11/30/2009SHEET REV.

COUNTY: COBB P.I. NO: 713640

PROJECT: NH000-0575-01(028)

J.B. TRIMBLE, INC.

SPAN 1

JOB NO: 31-6036 DESIGNED BY: SHG DATE: 10/14/2009

PRELIMINARY INFORMATION

INTERMEDIATE S	SLAB THICKNESS =	8.125	IN	
OVERHANG S	SLAB THICKNESS =	8.125	IN.	
(SIRDER SPACING =	7.500	FT	
NUME	BER OF GIRDERS =	5	/	
01	/ERHANG WIDTH =	3.000	FT	
TOF	FLANGE WIDTH =	12.000	IN	
CONCRET	E STRENGTH, fc =	3500	PSI	
STE	EL STRENGTH, fy =	60000	PSI	
F	ARAPET HEIGHT =	2.667	FT	
	PARAPET WIDTH =	1.625	FT	
	PARAPET AREA =	2.700	SF	
C.G	. FROM OUTSIDE =	0.667	FT	
TOP	BAR CLEARANCE =	2.750	IN	
BOTTOM	BAR CLEARANCE -	1.000	IN	

GROOVED DEPTH = 0.250 DESIGN SPEED = 50.00 MPH (IF CENTRIFUGAL CONSIDERED) FT (IF CENTRIFUGAL CONSIDERED) -

RADIUS = 0.00 WHEEL LOAD = 16.00 KIPS HS20

IMPACT FACTOR = 1.30

ADDITIONAL LOAD = 30.00

RAILING LOAD = 10.00 KIP

AT TOP OF PARAPET

BA	R DETAILS	S
SIZE	AREA	WEIGHT
Not Needed	0	0
No. 3	0.11	0.376
No. 4	0.20	0.668
No. 5	0.31	1.043
No. 6	0.44	1.502
No. 7	0.60	2.044
No. 8	0.79	2.670
No. 9	1.00	3.400
No. 10	1.27	4.300
No. 11	1.56	5.310
No. 14	2.25	7.650
No. 18	4.00	13.600

INTERMEDIATE SLAB DESIGN

BEAM TYPE: STEEL (TB, STEEL, PSC, BULB-T)

EFFECTIVE SPAN LENGTH = 7.000 FT

AASHTO 3.24.1.2

DEAD LOAD

SLAB D.L. = 0.102 KIP/FT/LF ADDITIONAL D.L. = 0.030 TOTAL D.L.= 0.132 KIP/FT/LF

DEAD LOAD MOMENT = 1.3 * (WT DL) * (SPAN) 2 / 10 = 0.838 KIP-FT / LF

LIVE LOAD

WHEEL LOAD = 16.00 KIPS

CONT. FACTOR = 0.80

IMPACT =

LIVE LOAD MOMENT = 2.17 * ((S + 2)/32) * P(LL + I) * 0.8 = 10.156 KIP-FT / LF

AASHTO 3.24.3.1

CENTRIFUGAL LOAD

C = 6.68 * S^2/ R = 0.000 FRACTION OF LIVE LOAD

AASHTO 3.10.1

CENTRIFUGAL FORCE MOMENT = 1.3 * ((S + 2)/32) * P (LL+ I) * 0.8 * C = 0.000 KIP-FT / LF

AASHTO TABLE 3.22.1A

TOTAL DESIGN MOMENT (Ø Mu) = 10.994 KIP-FT / LF = 131.92 K-IN / LF

FLEXURE STRENGTH

Ø Mn > Mu

AASHTO 8.16.3.2

 \emptyset Mn = \emptyset * [As * fy * (d - a/2)] where a = As * fy / [0.85 * fc * b]

1.681 As

5.063 IN

USE 5 BAR

As =

0.31 IN^2/LF

d bot = 6.563 IN

USE 5 BAR

0.31 As = IN/2/LF

TOP STEEL

273.375 As -

45.38 As/2 =

131.92 K-IN / LF

SPACED AT TOP BAR = NO. 6.250 IN 0.60 IN^2/LF As =

> Ø Mn = 146.64 K-IN / LF Ø Mu = 131.92 K-IN / LF OK

BOTTOM STEEL

354.375 As -

45.38 As^2 = 131.92 K-IN / LF

BOT BAR = NO. SPACED AT 6.250 IN As = 0.60 IN^2/LF

> Ø Mn = 194.85 K-IN / LF Ø Mu = 131.92 K-IN / LF

COUNTY: COBB P.I. NO: 713640

PROJECT: NH000-0575-01(028)

J.B. TRIMBLE, INC.

SPAN 1

JOB NO: 31-6036 DESIGNED BY: SHG

DATE: 10/14/2009

OVERHANG SLAB DESIGN

EFFECTIVE SPAN LENGTH = 2.500

TOTAL MOM =

AASHTO 3.24.5.1

DEAD LOAD

SLAB D.L. = 0.102 KIP/FT/LF ADDITIONAL D.L. = 0.030 KIP/FT/LF PARAPET D.L.= KIP/FT/LE 0.405

DL MOMENT @ FLANGE:

SLAB MOM = 0.317 KIP-FT/LF KIP-FT/LF ADD'L MOM = 0.011 PARAPET MOM = 0.743 KIP-FT/LF

1.071

DL MOMENT @ EDGE OF BARRIER:

SLAB MOM = 0.134 KIP-FT/LF ADD'L MOM = KIP-FT/LF 0.000 PARAPET MOM = 0.388 KIP-FT/LF TOTAL MOM = 0.522 KIP-FT/LF

DEAD LOAD MOMENT @ FLANGE= 1.3 * TOTAL MOMENT = 1.393 KIP-FT / LF D.L. MOMENT @ EDGE OF BARRIER= 1.3 * TOTAL MOMENT = 0.679 KIP-FT / LF

KIP-FT/LF

LIVE LOAD

WHEEL LOAD

16.00 KIPS

IMPACT = 1.30 MOM ARM (X)= 0.38 E = 0.8 * X + 3.75 = 4.05 FT

LIVE LOAD MOMENT = 2.17 * (P(LL + I) / E) * X = 4.179 KIP-FT / LF

AASHTO 3.24.5.1.1

CENTRIFUGAL LOAD

C = 6.68 * S/2/ R = 0.000 FRACTION OF LIVE LOAD

CENTRIFUGAL FORCE MOMENT = 1.3 '(P(LL+I)/E)'X'C = 0.000 KIP-FT/LF

RAILING LOAD

RAILING LOAD = 10.00 AASHTO 3.24.5.2

RAILING LOAD @ FLANGE:

MOM ARM (H) = 3.118 FT DISTANCE (X) =

1.83 E = 0.8 * X + 5.00 = 6.47 FT

KIPS

RAILING LOAD @ EDGE OF BARRIER:

MOM ARM (H) = 0.96 DISTANCE (X) = E = 0.8 * X + 5.00 = 5.77

RAIL MOM @ FLANGE= 2.17 * (Prail/ E) * H = 10.463 KIP-FT / LF

RAIL MOM @ EDGE OF BARRIER= 2.17 * (Prail/ E) * H = 11.733 KIP-FT / LF

SUMMARY OF MOMENTS:

DL + LL @ FLANGE = 5.572 KIP-FT / LF DL + RAIL @ FLANGE = 11.856 KIP-FT / LF DL + RAIL @ BARRIER = 12.412 KIP-FT / LF

TOTAL DESIGN MOMENT (Ø Mu) = 12.412 KIP-FT / LF = 148.95 K-IN / LF

FLEXURE STRENGTH

Ø Mn > Mu

 $\emptyset = 0.90$

AASHTO 8.16.3.2

 \emptyset Mn = \emptyset *[As * fy * (d - a/2)] where a = As * fy / [0.85 * fc * b]

a = 1.681 As

d top = 5.063 IN

0.31 IN'2/LF As =

PROVIDE ADDITIONAL OVERHANG STEEL = 4 BAR

Ø Mn = 146.64 K-IN / LF

0.20 IN/2/LF

TOP STEEL

273.375 As -

148.95 K-IN / LF

TOP BAR = NO.	5	SPACED AT	6.250 IN	As =	0.60	IN^2
TOT DESIGNATION		OT NOLD AT	0.200 111	no -	0.00	_

Ø Mu = 148.95 K-IN / LF ADD. REINF. NEEDED!!

ADD'L BAR = NO. SPACED AT 12.50 IN As = 0.19 IN^2/LF

> Mn = 187.08 K-IN / LF 148.95 K-IN / LF 2

COUNTY: COBB P.I. NO: 713640

PROJECT: NH000-0575-01(028)

JOB NO: 31-6036 DESIGNED BY: SHG DATE: 10/14/2009

DDEL IMINADY	INFORMATION
PRELIMINANT	INFORMATION

INTERMEDIATE SLAB THICKNESS =	8.250	IN	
OVERHANG SLAB THICKNESS =	8.250	IN	
GIRDER SPACING =	8.000	FT	
NUMBER OF GIRDERS =	5		
OVERHANG WIDTH =	3.000	FT	
TOP FLANGE WIDTH =	12.000	IN	
CONCRETE STRENGTH, f'c =	3500	PSI	
STEEL STRENGTH, fy =	60000	PSI	
PARAPET HEIGHT =	2.667	FT	
PARAPET WIDTH =	1.625	FT	
PARAPET AREA =	2.700	SF	
C.G. FROM OUTSIDE =	0.667	FT	
TOP BAR CLEARANCE =	2.750	IN	
BOTTOM BAR CLEARANCE =	1.000	IN	
ODGGLIED DESTIL			

GROOVED DEPTH = 0.250 MPH (IF CENTRIFUGAL CONSIDERED) DESIGN SPEED = 50.00 RADIUS = FT (IF CENTRIFUGAL CONSIDERED) 0.00

WHEEL LOAD = 16.00 KIPS

IMPACT FACTOR = 1.30 ADDITIONAL LOAD = PSF 30.00

RAILING LOAD = 10.00 KIP AT TOP OF PARAPET

HS20

BA	AR DETAIL:	S
SIZE	AREA	WEIGHT
Not Needed	0	0
No. 3	0.11	0.376
No. 4	0.20	0.668
No. 5	0.31	1.043
No. 6	0.44	1.502
No. 7	0.60	2.044
No. 8	0.79	2.670
No. 9	1.00	3.400
No. 10	1.27	4.300
No. 11	1.56	5.310
No. 14	2.25	7.650
No. 18	4.00	13.600

INTERMEDIATE SLAB DESIGN

BEAM TYPE: STEEL (TB, STEEL, PSC, BULB-T)

EFFECTIVE SPAN LENGTH = 7.500 FT

AASHTO 3.24.1.2

DEAD LOAD

SLAB D.L. = 0.103 KIP/FT/LF ADDITIONAL D.L. = KIP/FT/LF 0.030 KIP/FT/LF TOTAL D.L.= 0.133

DEAD LOAD MOMENT = 1.3 * (WT DL) * (SPAN)2 / 10 = 0.973 KIP-FT / LF

LIVE LOAD

WHEEL LOAD = 16.00 KIPS

CONT. FACTOR = 0.80 IMPACT = 1.30

LIVE LOAD MOMENT = 2.17 * ((S + 2)/32) * P(LL + I) * 0.8 = 10.720 KIP-FT / LF

AASHTO 3,24,3,1

AASHTO 3.10.1

CENTRIFUGAL LOAD

C = 6.68 * S^2/ R = 0.000 FRACTION OF LIVE LOAD

CENTRIFUGAL FORCE MOMENT = 1.3 * ((S + 2)/32) * P (LL+ I) * 0.8 * C = 0.000 KIP-FT / LF

AASHTO TABLE 3.22.1A

TOTAL DESIGN MOMENT (Ø Mu) = 11.693 KIP-FT / LF = 140.32 K-IN / LF

FLEXURE STRENGTH

Ø Mn > Mu

Ø = 0.90

AASHTO 8.16.3.2

 \emptyset Mn = \emptyset *[As *fy *(d-a/2)] where a = As *fy /[0.85 *fc *b]

1.681 As

5.188 IN

USE 5 BAR

As =

0.31 IN/2 /LF

d bot = 6.688 IN USE 5 BAR

As = 0.31 IN/2/LF

0.62

TOP STEEL

280.125 As -

45.38 As^2 =

140.32 K-IN / LF

TOP BAR = NO. SPACED AT As = Ø Mn = 156.23 K-IN / LF Ø Mu = 140.32 K-IN / LF

BOTTOM STEEL

361.125 As -

45.38 As^2 = 140.32 K-IN / LF

BOT BAR = NO. SPACED AT 6.000 IN 0.62 IN^2/LF As =

> Ø Mn = 206.45 K-IN / LF 140.32 K-IN / LF Ø Mu =

COUNTY: COBB P.I. NO: 713640

PROJECT: NH000-0575-01(028)

J.B. TRIMBLE, INC.

SPAN 2

DESIGNED BY: SHG DATE: 10/14/2009

JOB NO: 31-6036

OVERHANG SLAB DESIGN

EFFECTIVE SPAN LENGTH = 2.500 FT

TOTAL MOM =

AASHTO 3.24.5.1

DEAD LOAD

SLAB D.L. = 0.103 KIP/FT/LF ADDITIONAL D.L. = 0.030 KIP/FT/LF PARAPET D.L.= 0.405 KIP/FT/LF

DL MOMENT @ FLANGE:

SLAB MOM = 0.322 KIP-FT/LF KIP-FT/LF ADD'L MOM = 0.011 PARAPET MOM = KIP-FT/LF 0.743

1.076

DL MOMENT @ EDGE OF BARRIER:

SLAB MOM = 0.136 KIP-FT/LF ADD'L MOM = KIP-FT/LF 0.000 PARAPET MOM = KIP-FT/LE 0.388 TOTAL MOM = 0.524 KIP-FT/LF

DEAD LOAD MOMENT @ FLANGE= 1.3 * TOTAL MOMENT = 1.399 KIP-FT / LF D.L. MOMENT @ EDGE OF BARRIER= 1.3 * TOTAL MOMENT = 0.682 KIP-FT / LF

KIP-FT/LF

LIVE LOAD

WHEEL LOAD 16.00 KIPS

IMPACT = 1.30 MOM ARM (X)= 0.38 E = 0.8 * X + 3.75 = 4.05 FT

LIVE LOAD MOMENT = 2.17 * (P(LL + I) / E) * X = 4.179 KIP-FT / LF

AASHTO 3.24.5.1.1

AASHTO 3.24.5.2

CENTRIFUGAL LOAD

C = 6.68 * S/2/ R = 0.000 FRACTION OF LIVE LOAD

CENTRIFUGAL FORCE MOMENT = 1.3 '(P(LL + I) / E) 'X 'C = 0.000 KIP-FT / LF

RAILING LOAD

RAILING LOAD = 10.00 KIPS

RAILING LOAD @ EDGE OF BARRIER:

RAILING LOAD @ FLANGE: MOM ARM (H) = 3.125 DISTANCE (X) = 1.83 E = 0.8 * X + 5.00 = 6.47 FT

MOM ARM (H) = 3.13 DISTANCE (X) = 0.96 E = 0.8 * X + 5.00 =

RAIL MOM @ FLANGE= 2.17 * (Prail/ E) * H = 10.486 KIP-FT / LF

RAIL MOM @ EDGE OF BARRIER= 2.17 * (Prail/ E) * H = 11.759 KIP-FT / LF

SUMMARY OF MOMENTS:

DL + LL @ FLANGE = 5.578 KIP-FT / LF DL + RAIL @ FLANGE = 11.886 KIP-FT / LF DL + RAIL @ BARRIER = 12.441 KIP-FT / LF

TOTAL DESIGN MOMENT (Ø Mu) = 12.441 KIP-FT / LF

FLEXURE STRENGTH

 $\emptyset = 0.90$

AASHTO 8.16.3.2

 \oslash Mn = \oslash * [As * fy * (d - a/2)] where a = As * fy / [0.85 * fc * b]

a = 1.681 As

Ø Mn > Mu

d top = 5.188 IN

USE 5 BAR

As = 0.31 IN/2/LF

TOP STEEL

280.125 As -

45.38 As^2 =

149.29 K-IN / LF

TOP BAR = NO. SPACED AT 6.000 IN As = 0.62 IN^2/LF Ø Mn = 156.23 K-IN / LF Ø Mu = 149.29 K-IN / LF

COUNTY: COBB P.I. NO: 713640

PROJECT: NH000-0575-01(028)

J.B. TRIMBLE, INC. SPAN 3

JOB NO: 31-6036 DESIGNED BY: SHG DATE: 10/14/2009

> BAR DETAILS AREA

> > 0.11

0.44

0.60

0.79

1.00

1.56

0.376

0.668

1.043

1.502

2.044

2.670

3,400

4.300

5.310

Not Need No. 3

No. 4

No. 5

No. 6

No. 7

No. 8

No. 9

No. 10

No. 11

No. 18

PRELIMINARY INFORMATION

INTERMEDIATE SLAB THICKNESS =	8.500	IN	
OVERHANG SLAB THICKNESS =	8.500	IN	
GIRDER SPACING =	8.500	FT	
NUMBER OF GIRDERS =	5		
OVERHANG WIDTH =	3.000	FT	
TOP FLANGE WIDTH =	12.000	IN	
CONCRETE STRENGTH, f'c =	3500	PSI	
STEEL STRENGTH, fy =	60000	PSI	
PARAPET HEIGHT =	2.667	FT	
PARAPET WIDTH =	1.625	FT	
PARAPET AREA =	2.700	SF	
C.G. FROM OUTSIDE =	0.667	FT	
TOP BAR CLEARANCE =	2.750	IN	
BOTTOM BAR CLEARANCE =	1.000	IN	

MPH (IF CENTRIFUGAL CONSIDERED)
FT (IF CENTRIFUGAL CONSIDERED)
KIPS GROOVED DEPTH = 0.250 DESIGN SPEED = 50.00 RADIUS = 0.00

WHEEL LOAD = 16.00 IMPACT FACTOR = 1.30

ADDITIONAL LOAD = 30.00

RAILING LOAD = 10.00 KIP

AT TOP OF PARAPET

INTERMEDIATE SLAB DESIGN

BEAM TYPE: STEEL (TB, STEEL, PSC, BULB-T)

EFFECTIVE SPAN LENGTH = 8.000 FT

AASHTO 3.24.1.2

DEAD LOAD

SLAB D.L. = 0.106 KIP/FT/LF ADDITIONAL D.L. = 0.030 KIP/FT/LF

DEAD LOAD MOMENT = 1.3 * (WT DL) * (SPAN) 10 = 1.134 KIP-FT / LF

LIVE LOAD

WHEEL LOAD = 16.00 KIPS

CONT. FACTOR = 0.80

IMPACT =

LIVE LOAD MOMENT = 2.17 * ((S + 2)/32) * P(LL + I) * 0.8 = 11.284 KIP-FT / LF

AASHTO 3.24.3.1

AASHTO 3.10.1

CENTRIFUGAL LOAD

C = 6.68 * S/2/ R = 0.000 FRACTION OF LIVE LOAD

CENTRIFUGAL FORCE MOMENT = 1.3 * ((S + 2)/32) * P (LL+ I) * 0.8 * C = 0.000 KIP-FT / LF

AASHTO TABLE 3.22.1A

TOTAL DESIGN MOMENT (Ø Mu) = 12.418 KIP-FT / LF = 149.01 K-IN / LF

FLEXURE STRENGTH

Ø Mn > Mu

AASHTO 8.16.3.2

 \emptyset Mn = \emptyset * [As * fy * (d - a/2)] where a = As * fy / [0.85 * fc * b]

1.681 As

5.438 IN

USE 5 BAR

As = 0.31 IN/2/LF

d bot = 6.938 IN

USE 5 BAR

Ø Mu = 149.01 K-IN/LF

0.31 As = IN/2/LF

TOP STEEL

293.625 As -

45.38 As^2 =

149.01 K-IN / LF

OK

TOP BAR = NO. SPACED AT 5.875 IN As = 0.63 IN^2/LF

BOTTOM STEEL

374.625 As -

Ø Mn = 167.73 K-IN / LF

45.38 As^2 = 149.01 K-IN / LF

BOT BAR = NO. SPACED AT 5.875 IN As = 0.63 IN^2/LF

> Ø Mn = 219.02 K-IN / LF Ø Mu = 149.01 K-IN / LF

COUNTY: COBB P.I. NO: 713640

PROJECT: NH000-0575-01(028)

JOB NO: 31-6036 DESIGNED BY: SHG

DATE: 10/14/2009

OVERHANG SLAB DESIGN

EFFECTIVE SPAN LENGTH = 2.500

AASHTO 3.24.5.1

DEAD LOAD

SLAB D.L. = 0.106 KIP/FT/LF ADDITIONAL D.L. = 0.030 KIP/FT/LF KIP/FT/LF PARAPET D.L.= 0.405

DL MOMENT @ FLANGE:

SLAB MOM = KIP-FT/LF 0.332 ADD'L MOM = 0.011 KIP-FT/LF PARAPET MOM = KIP-FT/LF 0.743 TOTAL MOM = KIP-FT/LF

1.086

DL MOMENT @ EDGE OF BARRIER:

0.140 KIP-FT/LE SLAB MOM = ADD'L MOM = KIP-FT/LF 0.000 PARAPET MOM = KIP-FT/LF 0.388 TOTAL MOM = 0.528 KIP-FT/LF

DEAD LOAD MOMENT @ FLANGE= 1.3 * TOTAL MOMENT = 1.412 KIP-FT / LF D.L. MOMENT @ EDGE OF BARRIER= 1.3 * TOTAL MOMENT = 0.687 KIP-FT / LF

LIVE LOAD

WHEEL LOAD 16.00 KIPS

IMPACT = 1.30 MOM ARM (X)= 0.38 E = 0.8 * X + 3.75 = 4.05 FT

LIVE LOAD MOMENT = 2.17 * (P(LL + I) / E) * X = 4.179 KIP-FT / LF

AASHTO 3.24.5.1.1

AASHTO 3.24.5.2

CENTRIFUGAL LOAD

C = 6.68 * S/2/ R = 0.000 FRACTION OF LIVE LOAD

CENTRIFUGAL FORCE MOMENT = 1.3 *(P(LL + I) / E) * X * C = 0.000 KIP-FT / LF

RAILING LOAD

RAILING LOAD = 10.00 KIPS

RAILING LOAD @ FLANGE: MOM ARM (H) = DISTANCE (X) = 1.83 E = 0.8 * X + 5.00 = 6.47 FT RAILING LOAD @ EDGE OF BARRIER:

MOM ARM (H) = DISTANCE (X) = E = 0.8 * X + 5.00 =

RAIL MOM @ FLANGE= 2.17 * (Prail/ E) * H = 10.533 KIP-FT / LF

RAIL MOM @ EDGE OF BARRIER= 2.17 * (Prail/ E) * H = 11.812 KIP-FT / LF

SUMMARY OF MOMENTS:

DL + LL @ FLANGE = 5.591 KIP-FT / LF DL + RAIL @ FLANGE = 11.945 KIP-FT / LF DL + RAIL @ BARRIER = 12.499 KIP-FT / LF

TOTAL DESIGN MOMENT (Ø Mu) = 12.499 KIP-FT / LF

FLEXURE STRENGTH

Ø = 0.90

AASHTO 8.16.3.2

 \emptyset Mn = \emptyset * [As * fy * (d - a/2)] where a = As * fy / [0.85 * fc * b]

a = 1.681 As

Ø Mn > Mu

d_{10p} = 5.438 IN

USE 5 BAR

As = 0.31 IN/2 /LF

TOP STEEL

293.625 As -

45.38 As^2 =

149.98 K-IN / LF

TOP BAR = NO.	5	SPACED AT		5.875 IN	1		As =	0.63	IN^2/LF
Г	Ø Mn =	167.73 K-IN / LF	>	Ø Mu =	149.98 K-IN / LF	ОК			

SERVICE LOAD DESIGN OF BRIDGE SLAB

Georgia Department of Transportation 13-MAY-04
Office of Bridge and Structural Design 07:49:26
October 2003

			October	2003										
	WHEEL LOAD (Kips)	fc (ksi)	fs (ksi)	n	SI	LAB OVER	R	FUTURE PAVING kips/ft		CO	TACT	UITY		
	16.00		24.000	9		750		0.030		,	0.	8		
			======		=			======			====	===:		
	EFFECTIVE				SI	ZE .	ANI)		DIS	TRU	BUT	ION	
	SPAN	SLAB THI						MAIN			NFOR	CEME	INT	
Laun 1	LENGTH	MINIMUM		RE	II	FOF		MENT		IDD			UTI	
Jun -	(ft-in)	(in)	(in)				1	(in)		HAL	F	QU	ART	ERS
11.11	6 - 6	7.8889	8.000	#	5	at	6.	500	7	-#	4	4	-#	4
7-6"	6 - 7	7.9167	8.000	#	5	at	6.	375	7	-#	4	4	-#	4
1100	6 - 8	7.9445	8.000	#	5	at	6.	375	7	-#	4	4	-#	4
1-0	6 - 9	7.9722	8.000	#	5	at	6.	250	7	-#	4	4	-#	4
2 1/ (12")	6 - 10	7.9998	8.000	#	5	at	6.	250	7	-#	4	4	-#	4
(4)	6 - 11	8.0309	8.125	#	5	at	6.	250	7	-#	4	4	-#	4
1100_	7 - 0	8.0585	8.125	#	5	at	6.	250	7	-#	4	4	-#	4
/	7 - 1	8.0860	8.125	#	5	at	6.	125	8	-#	4	4	-#	4
	7 - 2	8.1134	8.125	#	5	at	6.	125	8	-#	4	4	-#	4
	7 - 3	8.1446	8.250	#	5	at	6.	125	8	-#	4	4	-#	4
	7 - 4	8.1719	8.250	#	5	at	6.	125	8	-#	4	4	-#	4
	7 - 5	8.1992	8.250	#		at		000	8	-#	4	4	-#	4
	7 - 6	8.2265	8.250		_	at	6.	000		-#	4	4		4
Span 2 5	7 - 7	8.2577	8.375		_	at	_	000	_	-#	4		-#	4
Span 2	7 - 8	8.2849	8.375	#		at		000	8	-#	4	4	-#	4
	7 - 9	8.3121	8.375	#		at	5.	875	9	-#	4	6	-#	4
	7 - 10	8.3392	8.375	#		at		875	9	-#	4	6	-#	4
	7 - 11	8.3662	8.375	#	5	at	5.	750	9	-#	4	6	-#	4
Span 3 -	8 - 0	8.3976	8.500	#	5	at		875	9	-#	4	6	-#	4
/	8 - 1	8.4246	8.500					750	9	-#	4		-#	4
	8 - 2	8.4515	8.500	#	5	at	5.	750	9	-#	4	6	-#	4
	8 - 3	8.4784	8.500	#		at		625	9	-#	4	6	-#	4
	8 - 4	8.5099	8.625	#				750	9	-#	4	6		4
	8 - 5	8.5367	8.625	#	5	at	5.	625	10	-#	4	6	-#	4
	8 - 6	8.5636	8.625							-#			-#	
	8 - 7	8.5903	8.625					500		-#		6	-#	4
	8 - 8	8.6170	8.625					500		-#			-#	
	8 - 9	8.6487	8.750							-#			-#	
	8 - 10	8.6754	8.750							-#			-#	17
	8 - 11	8.7020	8.750					500		-#				4
	9 - 0	8.7286	8.750							-#	4		-#	
	9 - 1	8.7605	8.875							**	4			4
	9 - 2	8.7871	8.875							-#	4			4
	9 - 3	8.8136	8.875					375		-#	4			4
	9 - 4	8.8401	8.875							-#	4		-#	4
	9 - 5	8.8665	8.875							-#			-#	
	2 - 3	0.0003	0.0/5	TT	2	ac	3.	200	16	- 11	*	0	- 11	-

SECTION IV - CONCRETE AND REINFORCING STEEL

BRIDGE DECK DESIGN

No. 4.01

When designing bridge decks, the following criteria shall be applied:

For cast-in-place decks north of the fall line:

- Specify Class AA concrete except for post-tensioned concrete boxes which shall have Class AA as a minimum, but may require a higher 28-day strength.
- 2. Specify 2 ¾" (70 mm) cover to top bar reinforcement for bridge decks on interstate routes, state routes and routes with design year ADT equal to or greater than 2000.
- 3. Specify 2 1/2" (65 mm) cover to top bar reinforcement for bridge decks on all other routes.

For cast-in-place decks south of the fall line:

- Specify Class AA concrete except for post-tensioned concrete boxes which shall have Class AA as a minimum, but may require a higher 28-day strength.
- Specify 2 ¼" (60 mm) cover to top bar reinforcement for bridge decks on interstate routes, state routes and routes with design year ADT equal to or greater than 2000.
- 3. Specify 2" (50 mm) cover to top bar reinforcement for bridge decks on all other routes.

For bridge decks of precast concrete elements, specify 2" cover to top bar reinforcement statewide.

Note that ¼" of concrete thickness may be planed off of the top of cast-in-place decks on interstate routes, state routes and routes with design year ADT equal to or greater than 2000. Therefore, reduce slab thickness accordingly for strength calculations of composite slabs on steel or PSC beams and post-tensioned boxes.

Deck slabs shall be designed by the Service Load method with $f_c = 1400$ psi (10 MPa), as a rule.

The minimum 28 day strength (f'_c) for the deck concrete shall be 3500 psi (25 MPa). Slabs shall be designed so that the main slab reinforcement is the same in the bottom of the slab as in the top. To achieve this, the effective depth shall be taken as the distance from the bottom of the slab to the centroid of the top main reinforcing steel for both positive and negative moment. Positive and negative moments shall be assumed to be equal and shall be calculated in accordance with the AASHTO Specifications.

See Fig. 4-01 for a location map of the fall line for Georgia.

FALL LINE MAP Figure 4-01

CALCULATION COVER SHEET

PROJECT	JOB NO.			CALC NO).	SHEET
I-75 / I-575 NORTHWEST CORRIDOR	NH000-0073	3-03(242)		BR#31		1
SUBJECT		DISCI	PLINE			
Beam Design Input		STRU	CTURAL			
CALCULATION STATUS PRELIMINARY DESIGNATION	CONFIRMED	SUPS	SEDED	VOIDE	D INCO	MPLETE
						X
COMPUTER SCP	MAINFRAME	PC F	ROGRAM	IVFR	SION/RELEAS	E NO
PROGRAM/TYPE		(X)	Excel		2003	
Note 1: Georgia Department of Transportation (GDO the completion of all work under that contract and dire (a) These calculations were not completed at the time	cted that the wor	k with respection and t	pect to these he informati	e calculatio on containe	ns be discontined herein is not	ued. complete
and/or has not been fully verified or checked. These c. (b) Any user is cautioned that the use of these calcula factors and without proper regard for their purpose, co (c) If any such calculations or any information contained a complete confirmation of the information contained h (d) GTP has no responsibility for the use of this information.	tions and any rel ould lead to erron ed herein is used nerein should be	ated inforr eous cond in future v performed	mation or ca clusions. work efforts I prior to any	lculations, v	without access	to
Beam Design Input calculations are included for span	1, and spans 2&	3 (beams	1, 3 & 5).			
						T
		+	 			1
A As per GDOT's termination for convenience dire	ection 9	9	JCR			11/30/09
A As per GDOT's termination for convenience dire NO. REASON FOR REVISION	TOTAL NO. OF SHEETS	LAST SHEET	BY (CHECKED	APPROVED/ ACCEPTED	
RF	CORD OF REV	ISIONS	1			1

PROJECT: <u>I-75 / I-575 NORTHWEST CORRIDOR</u>
JOB NUMBER <u>NH000-0073-03(242)</u>
CALC NO. <u>BR#31</u>

SUBJECT:Beam Design Input - Span 1SHEET NO.BY:JCRDATE:11/30/2009SHEET REV.

COUNTY: COBB

P.I. NO: **713640** PROJECT: **NH000-0575-01(028)**

SPAN	1		
Beam Type	Plate Girder	•	1000
'D' DIMENSION =	9.75	IN	\N.
MIN. COPING DEPTH =	0.375	IN	

J.B. TRIMBLE, INC.

JOB NO: 31-6036
DESIGNED BY: SHG
DATE: 10/16/2009

Beam Type Pl	ate Girder	- " Os						-
'D' DIMENSION =	9.75	IN A	AASHTO 8.10.1.1 - Comp	ression Flange wBM FLANGE =		in.		-
D DIVIENSION =	3.73	IIV /		Bm Spacing =		in. CONTROLS		
MIN. COPING DEPTH =	0.375	IN	b = 1/4	Span Length =		in.		
			b = WBM FLANGE	= + 2[6 tSLAB] =	106.50	in.		
BRIDGE GEOMETRY INPUT:			DEAD LOAD CALCULATION	ON:				
LARGER BEAM SPACING	7.500	FT	SPAN LENGTH	78.25	FT			
SMALLER BEAM SPACING	7.500	FT	BEAM WEIGHT	0.178	KLF		REACTION (K)	MOMENT (K-FT)
SKEW ANGLE	90.00	DEGREES						
SLAB:			TOTAL DL	1.703	KIP/LF		66.621	1303.280
'D' DIMENSION	9.75	IN	P-LOADS:					
DESIGN SLAB DEPTH COPING WIDTH	7.875 1.000	IN Z	TYPE	LOAD (K)	POSITION (FT)		0.000	0.000
COPING WIDTH	1.125	IN	END WALL: DIAPHRAGM:	3.932 0.353	0.00 19.5625		3.932 0.265	0.000 5.181
SLAB & COPING WEIGHT	0.752	KIP/FT	DIAPHRAGM:	0.353	39.125		0.177	6.907
SIP FORMWORK	0.104	KIP/FT	DIAPHRAGM:	0.353	58.6875		0.088	5.181
DECK OVERLAY			EDGE BEAM:	1.863	78.25		0.000	0.000
AVERAGE THICKNESS	0.250	IN						
DECK OVERLAY WEIGHT	0.023	KIP/FT					REACTION (K)	MOMENT (K-FT)
ROADWAY WIDTH FUTURE WEARING SURFACE	44.250 0.266	FT KIP/FT				TOTAL DL	71.1	1320.5
	0.200	KIF/F I						
UTILITIES		MIDIET	LIVE LOAD CALCULATION	N:				
GAS MAIN (not added to W _{DLC})	0.00	KIP/FT	BEAM DISTRIBUTION					
TLPHONE CONDUITS (not added to W _{DL} WATER MAIN	0.00	KIP/FT		MOMENT	1.364	WHEEL	VERIFY !!!!	
	0.00	KIP/FT			0.682	AXLE		
EDGE BEAM:	0.04			SHEAR	1.667	WHEEL	VERIFY !!!!	
DEPTH (from top of slab) WIDTH	2.31 1.000	FT FT			0.833	AXLE		
EDGE BM. WEIGHT	1.863	KIP	IMPACT FACTOR		1,246			
DIAPHRAGM:			HS 20 LOADING:	MIDSPAN:	1128.5	KIP-FT		
Plate (3/8" X 5" X 2'-8")	0.017	KIP	HS 20 LOADING:	MAX:	1133.5	KIP-FT		
CHANNEL (MC 18" X 42.7")	0.043	KIP/FT						
DIAPH. WEIGHT	0.353	KIP	HS 20 REACTION:				RXDFXI	
END WALL: FIX ▼				TRUCK	63.41	KIP	59.91	KIP
DEPTH (from top of slab)	5.063	FT		LANE	51.04	KIP	48.27	KIP
WIDTH	0.667	FT		r			DELICITION OF	
PAVING NOTCH WIDTH AVG. PAVING NOTCH DEPTH	0.667	FT FT			•	TOTAL LL+ I:	REACTION (K) 59.9	MOMENT (K-FT)
END WALL WEIGHT	3.932	KIP					MAX TOTAL LL+ I:	958.7 963.0
PARAPET:								000.0
SW, PAR., FENCE, & MEDIAN WEIGHT	1.900	KIP/FT		Г			REACTION (K)	MOMENT (K-FT)
NUMBER OF BEAMS	5				Т	OTAL D.L. + L.L =		2279.3
PARAPET WEIGHT	0.380	KIP/FT		-				22.0.0
SIDEWALK LIVE LOAD:			DEFLECTIONS CALCULAT	TION:				
SIDEWALK WIDTH	0	FT						
SIDEWALK LOAD	0.060	KIP/FT^2	NO. LANES		3			
NUMBER OF BEAMS SIDEWALK LIVE LOAD PER BEAM	5 0.000	KIP/FT	NO. BEAMS		5 0.90		FACTOR	4.000
SIDEWALK LIVE LOAD PER BEAM	0.000	NIF/F I	REDUCTION FACTOR		0.90		FACTOR	1.080

SIMPLE	SPAN	PROGRAM	INPUT:
--------	------	---------	--------

LENGTH =	78.25	FT
Moment Dist. Factor (DFM) =	1.364	
End Shear Dist. Factor (DFV) =	1.667	
LL Deflection Dist. Factor (DFD) =	1.080	
Non- Composite DL (W _{DLNC}) =	0.880	KLF
Composite DL (W _{DLC}) =	0.646	KLF W/ F.W.S
Sidewalk LL (W _{swK}) =	0.000	KLF
Effective Concrete Width (W _t) =	90.000	IN
Concrete Slab Thickness (T _f) =	7.875	IN
Minimum Coping (Df) =	0.750	IN
P-LOADS:		
XP1	0.00	FT
P1	3.932	K
XP2	19.5625	FT
P2	0.353	K
XP3	39.125	FT
P3	0.353	K
XP4	58.6875	FT
P4	0.353	K
XP5	78.250	FT
P5	1.863	K

PROJECT: <u>I-75 / I-575 NORTHWEST CORRIDOR</u>
JOB NUMBER <u>NH000-0073-03(242)</u>
CALC NO. <u>BR#31</u>

SUBJECT: Beam Design Input - Spans 2&3 (beam 1) SHEET NO.
BY: JCR DATE: 11/30/2009 SHEET REV.

BRIDGE: I-75 over Noonday Creek COUNTY: COBB P.I. NO: 713640

MIN. COPING DEPTH = 0.375 IN

PROJECT: NH000-0575-01(028)

SPANS 2 & 3 (Beam 1)

Beam Type Enterior Plate Girder 'D' DIMENSION = 10.875 IN J.B. TRIMBLE, INC.

JOB NO: 31-6036 DESIGNED BY: SHG DATE: 10/16/2009

PJC 10-21-09

ASHTO 8.10.1.1 - Compression Flange Widt	th ~		
wBM FLANGE =	10.00	in.	
b = Bm Spacing =	102.00	In. CONTROLS	
b = ¼ Span Length =	303.75	in.	
b = WBM FLANGE + 2[6 tSLAB] =	109.00	in.	

			b = WBM FLAN	GE + 2[6 tSLAB] =	109.00	in.		
BRIDGE GEOMETRY INPUT:			DEAD LOAD CALCULAT	TION:				
LARGER BEAM SPACING MALLER BEAM SPACING KEW ANGLE	8.500 8.500 64.00	FT FT DEGREES	SPAN LENGTH BEAM WEIGHT	101.25 0.230	FT KLF		REACTION (K)	MOMENT (K-FT)
LAB: 'D' DIMENSION	10.875	IN	TOTAL DL. P-LOADS:	1.939	KIP/LF		98.183	2485.256
DESIGN SLAB DEPTH	8.250	IN 1	TYPE	LOAD (K)	POSITION (FT)		
COPING WIDTH	0.833	FT	END WALL:	5.017	0.00		5.017	0.000
COPING DEPTH	1.5	_IN	DIAPHRAGM:	0.395	20.25		0.316	6.395
SLAB & COPING WEIGHT	0.892	KIP/FT	DIAPHRAGM:	0.395	40.50		0.237	9.592
SIP FORMWORK	0.123	KIP/FT	DIAPHRAGM:	0.395	60.75		0.158	9.592
ECK OVERLAY			DIAPHRAGM:	0.395	81.00		0.079	6.395
AVERAGE THICKNESS	0.250	IN	EDGE BEAM:	2.438	101.25		0.000	0.000
DECK OVERLAY WEIGHT	0.027	KIP/FT	1					
OADWAY WIDTH	48.000	FT					REACTION (K)	MOMENT (K-F
UTURE WEARING SURFACE	0.288	KIP/FT				TOTAL DL :	104.0	2517.2
TILITIES			LIVE LOAD CALCULATE	ON:				
GAS MAIN (not added to WoLC)	0.00	KIP/FT	BEAM DISTRIBUTION					
TLPHONE CONDUITS (not added to Wrx	0.00	KIP/FT	1	MOMENT	1.545	WHEEL	VERIFY III	
WATER MAIN	0.00	KIP/FT			0.773	AXLE		
OGE BEAM:	4.00			SHEAR		WHEEL	VERIFY III	
DEPTH (from top of slab)	2.41	FT		OFICAR	0.912	AXLE	ACMAL I III	
WIDTH	1.000	FT			0.012	POLLE.		
EDGE BM, WEIGHT	2.438	KIP	IMPACT FACTOR		1.221			
APHRAGM:			HS 20 LOADING:	MIDSPAN:	1542.5	KIP-FT		
late (3/8" X 5" X 2'-8")	0.017	KIP	no 20 LOADING:	MAX		KIP-FT		
HANNEL (MC 18" X 42.7")	0.043	KIP/FT		moor.	1040/4	Mary 1		
DIAPH, WEIGHT	0.395	KIP	HS 20 REACTION:				RxDFxI	
ND WALL: FIX T				TRUCK	65.36	KIP	67.10	KIP
DEPTH (from top of slab)	5.156	FT		LANE		KIP	59.51	KIP
WIDTH	0.667	FT		L. C.	40.00		00.01	7400
PAVING NOTCH WIDTH	0.667	FT					REACTION (K)	MOMENT (K-F)
AVG. PAVING NOTCH DEPTH	0.833	FT				TOTAL LL+1:	67.1	1455.3
END WALL WEIGHT	5.017	KIP					MAX TOTAL LL+ I:	
ARAPET:								
SW, PAR., FENCE, & MEDIAN WEIGHT	1.900	KIP/FT					REACTION (K)	MOMENT (K-F)
NUMBER OF BEAMS	5	7-5-1			1	TOTAL D.L. + L.L =		3972.6
PARAPET WEIGHT	0.380	KIP/FT						
DEWALK LIVE LOAD:			DEFLECTIONS CALCUL	ATION:				
SIDEWALK WIDTH	0	FT	PER ELOTIONS SALOUE					
SIDEWALK LOAD	0.066	KIP/FT*2	NO. LANES		3			
NUMBER OF BEAMS	5		NO. BEAMS		5			
DEWALK LIVE LOAD PER BEAM	0.000	KIP/FT	REDUCTION FACTOR	R	0.90		FACTOR	1.080

SIMPLE SPAN PROGRAM INPUT:

LENGTH =	101.25	FT
Moment Dist. Factor (DFM) =	1.545	
End Shear Dist. Factor (DFV) =	1.824	
LL Deflection Dist. Factor (DFD) =	1.080	
Non- Composite DL (W _{DLNC}) =	1.041	KLF
Composite DL (W _{BLC}) =	0.668	KLF W/ F.W.S.
Sidewalk LL (W _{swx}) =	0.000	KLF
Effective Concrete Width (W _d) =	102.000	IN
Concrete Slab Thickness (T _n) =	8.250	IN
Minimum Coping (Df) =	0.750	IN
P-LOADS:		
XP1	0.00	FT
P1	5.017	K
XP2	20.250	FT
P2	0.395	K
хрз	40.500	FT
P3	0.395	K
XP4	60.750	FT
P4	0.395	K
XP5	81.000	FT
P5	0.395	K
XP6	101.250	FT
P6	2.438	K

PROJECT: <u>I-75 / I-575 NORTHWEST CORRIDOR</u>
JOB NUMBER <u>NH000-0073-03(242)</u>
CALC NO. <u>BR#31</u>

SUBJECT: Beam Design Input - Spans 2&3 (beam 3)

BY: JCR

DATE: 11/30/2009

SHEET NO.

SHEET REV.

COUNTY: COBB P.I. NO: 713640

PROJECT: NH000-0575-01(028)

SPANS 2 & 3 (Beam 3)

Beam Type Interior Plate Girder 'D' DIMENSION = 10.875 IN

1.900

0.380

0.060

0.000

KIP/FT

KIP/FT

KIP/FT^2

KIP/FT

J.B. TRIMBLE, INC.

AASHTO 8.10.1.1 - Compression Flange Width wBM FLANGE =

JOB NO: 31-6036 DESIGNED BY: SHG DATE: 10/16/2009

REACTION (K) 162.6

FACTOR

3449.9

1.080

TOTAL D.L. + L.L =

0.90

10' DIMENSION = MIN. COPING DEPTH =	0.375	IN IN	bi	wBM FLANGE = Bm Spacing = Span Length = E + 2[6 tSLAB] =	102.00 279.75	in. CONTROLS in. in.		
BRIDGE GEOMETRY INPUT:			DEAD LOAD CALCULATE	ON:				
LARGER BEAM SPACING SMALLER BEAM SPACING SKEW ANGLE	8.500 8.500 64.00	FT FT DEGREES	SPAN LENGTH BEAM WEIGHT	93.25 0.215	FT KLF		REACTION (K)	MOMENT (K-FT)
SLAB: 'D' DIMENSION DESIGN SLAB DEPTH COPING WIDTH	10.875 8.250 1.000	IN IN FT	TOTAL DL P-LOADS: TYPE END WALL:	1.925 LOAD (K) 5.017	POSITION (FT) 0.00		89.747 5.017	0.000
COPING DEPTH SLAB & COPING WEIGHT SIP FORMWORK	1.5 0.895 0.120	KIP/FT KIP/FT	DIAPHRAGM: DIAPHRAGM: DIAPHRAGM:	0.395 0.395 0.395	18.65 37.30 55.95		0.316 0.237 0.158	5.889 8.834 8.834
DECK OVERLAY AVERAGE THICKNESS DECK OVERLAY WEIGHT ROADWAY WIDTH	0.250 0.027 48.000	IN KIP/FT	DIAPHRAGM: EDGE BEAM:	0.395 2.438	74.60 93.25		0.079 0.000 REACTION (K)	5.889 0.000 MOMENT (K-FT
FUTURE WEARING SURFACE	0.288	KIP/FT				TOTAL DL :		2121.7
UTILITIES GAS MAIN (not added to W _{DLC}) TLPHONE CONDUITS (not added to W _{DL} WATER MAIN	0.00 0.00 0.00	KIP/FT KIP/FT KIP/FT	LIVE LOAD CALCULATION	N: MOMENT	1.545 0.773	WHEEL	VERIFY III	
EDGE BEAM: DEPTH (from top of slab) WIDTH	2.41	FT FT		SHEAR	0.912	WHEEL AXLE	VERIFY III	
EDGE BM. WEIGHT	2.438	KIP	IMPACT FACTOR		1.229			
DIAPHRAGM: Plate (3/8" X 5" X 2'-8") CHANNEL (MC 18" X 42,7")	0.017	KIP KIP/FT	HS 20 LOADING:	MIDSPAN: MAX:	14441	KIP-FT		
DIAPH, WEIGHT	0.395	KIP	HS 20 REACTION:				RXDFXI	
END WALL: DEPTH (from top of slab) WIDTH	5.156 0.667	FT FT		TRUCK		KIP KIP	57.48	KIP KIP
PAVING NOTCH WIDTH AVG. PAVING NOTCH DEPTH END WALL WEIGHT	0.667 0.833 5.017	FT KIP				TOTAL LL+ I:	67.0 MAX TOTAL LL+ I:	MOMENT (K-FT) 1328.2 1332.2

DEFLECTIONS CALCULATION:

REDUCTION FACTOR

NO. LANES NO. BEAMS

SIDEWALK	LIVE LOAD	PER BEAM
SIMPLE SP	AN PROGRA	AM INPUT:

SW, PAR., FENCE, & MEDIAN WEIGHT

PARAPET:

NUMBER OF BEAMS

SIDEWALK LIVE LOAD:

SIDEWALK WIDTH SIDEWALK LOAD NUMBER OF BEAMS

PARAPET WEIGHT

LENGTH =	93.25	FT
Moment Dist. Factor (DFM) =	1.545	
End Shear Dist. Factor (DFV) =	1.824	
LL Deflection Dist. Factor (DFD) =	1.080	
Non-Composite DL (Wound) =	1.042	KLF
Composite DL (W _{DLC}) =	0.668	KLF W/ F.W.S.
Sidewalk LL (W _{swt}) =	0.000	KLF
Effective Concrete Width (W _t) =	102.000	IN
Concrete Slab Thickness (T ₄) =	8.250	IN.
Minimum Coping (Df) =	0.750	IN
P-LOADS:		
XP1	0.00	FT
P1	5.017	K
XP2	18.650	FT
P2	0.395	K
XP3	37.300	FT
P3	0.395	K
XP4	55.950	FT
P4	0.395	K
XP5	74.600	FT
P5	0.395	K
XP6	93.250	FT
P6	2.438	K

PROJECT: <u>I-75 / I-575 NORTHWEST CORRIDOR</u>
JOB NUMBER <u>NH000-0073-03(242)</u>
CALC NO. <u>BR#31</u>

SUBJECT: Beam Design Input - Spans 2&3 (beam 5) SHEET NO.
BY: JCR DATE: 11/30/2009 SHEET REV.

BRIDGE: I-75 over Noonday Creek COUNTY: COBB P.I. NO: 713640 PROJECT: NH000-0575-01(028)

SPANS 2 & 3 (Beam 5)

Beam Type Interior Plate Girder ▼ 10.625 IN 'D' DIMENSION =

MIN. COPING DEPTH = 0.375 IN

J.B. TRIMBLE, INC.

JOB NO: 31-6036 DESIGNED BY: SHG DATE: 10/16/2009

AASHTO 8.10.1.1 - Compression Flange Wi	dth		
wBM FLANGE =	12.00	in.	
b = Bm Specing =	102.00	in. CONTROLS	
b = ¼ Span Length =	255.75	in.	
b = WBM FLANGE + 2[6 tSLAB] =	111.00	in.	

BRIDGE GEOMETRY INPUT:			DEAD LOAD CALCULAT	ION:				
LARGER BEAM SPACING	8.500	FT	SPAN LENGTH	85.25	FT			
SMALLER BEAM SPACING	8.500	FT	BEAM WEIGHT	0.194	KLF		REACTION (K)	MOMENT (K-FT)
SKEW ANGLE	90.00	DEGREES			-		THE POTTOT (FC)	monetti per ij
SLAB:		104	TOTAL DL	1.902	KIP/LF		81,086	1728.147
'D' DIMENSION	10,625	IN	P-LOADS:	1.902	KIPILE		61.066	1/28.14/
DESIGN SLAB DEPTH	8.250	IN	TYPE	LOAD (K)	POSITION (FT	n)		
COPING WIDTH	1,000	FT	EDGE BEAM:	2.165	0.00	,	2,165	0.000
COPING DEPTH	1,375	IN	DIAPHRAGM:	0.396	21.313		0.297	6.327
SLAB & COPING WEIGHT	0.894	KIP/FT	DIAPHRAGM:	0.396	42.625		0.198	8.435
SIP FORMWORK	0.120	KIP/FT	DIAPHRAGM:	0.396	63.938		0.099	6.327
DECK OVERLAY			EDGE BEAM:	2.165	85.25		0.000	0.000
AVERAGE THICKNESS	0.250	IN	ELOSE BEAM.	2.100	00.20		0.000	0.000
DECK OVERLAY WEIGHT	0.027	KIP/FT					REACTION (K)	MOMENT (K-FT
OADWAY WIDTH	48,000	FT				TOTAL DL	Name and Address of the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner	1749.2
UTURE WEARING SURFACE	0.288	KIP/FT				TOTAL DE	63.6	1/48.2
TILITIES			LIVE LOAD CALCULATIO	M.				
GAS MAIN (not added to Work)	0.00	KIP/FT	BEAM DISTRIBUTION					
TLPHONE CONDUITS (not added to Win	0.00	KIP/FT	DEPOS DISTRIBUTION	MOMENT	1.545	WHEEL	Land Street Land	
WATER MAIN	0.00	KIP/FT		MOMENT	110.10		VERIFY III	
	0.00	KIP/F1			0.773	AXLE		
DGE BEAM:				SHEAR		WHEEL	VERIFY III	
DEPTH (from top of slab)	2.39	FT			0.912	AXLE		
WIDTH	1.000	FT	Control of the Control					
EDGE BM. WEIGHT	2.165	KIP	IMPACT FACTOR		1.238			
IAPHRAGM:			HS 20 LOADING:	MIDSPAN:	1254.5	KIP-FT		
fate (3/8" X 5" X 2'-8")	0.017	KIP		MAX:	1259.1	KIP-FT		
HANNEL (MC 18" X 42.7")	0.043	KIP/FT						
DIAPH, WEIGHT	0.396	KIP	HS 20 REACTION:				RXDFXI	
				TRUCK	64.12	KIP	66.83	KIP
ARAPET:				LANE	53.28	KIP	55.44	KIP
SW, PAR., FENCE, & MEDIAN WEIGHT	1.900	KIP/FT						
NUMBER OF BEAMS	5						REACTION (K)	MOMENT (K-FT
PARAPET WEIGHT	0.380	KIP/FT				TOTAL LL+ I:	66.8	1199.9
							MAX TOTAL LL+ I:	1204.3
IDEWALK LIVE LOAD:								
SIDEWALK WIDTH	0	FT		- 1	-		REACTION (K)	MOMENT (K-FT)
SIDEWALK LOAD	0.060	KIP/FT^2				TOTAL D.L. + L.L =	150.7	2949.2
NUMBER OF BEAMS	5							234012
DEWALK LIVE LOAD PER BEAM	0.000	KIP/FT	DEFLECTIONS CALCULA	TION:				
			NO. LANES		3			
			NO. BEAMS		5			
			REDUCTION FACTOR		0.90		FACTOR	1.080
			THE DOUBLE PAUTON		0.00		moton	1.000

SIMPLE SPAN PROGRAM INPUT:

LENGTH =	85.25	FT
Moment Dist. Fector (DFM) =	1.545	
End Shear Dist. Factor (DFV) =	1.824	
LL Deflection Dist. Factor (DFD) =	1.080	
Non- Composite DL (WDLNC) =	1.040	KLF
Composite DL (WoLc) =	0.668	KLF W/ F.W.S.
Sidewalk LL (Www.) =	0.000	KLF
Effective Concrete Width (W _d) =	102.00	IN
Concrete Slab Thickness (T _s) =	8.250	IN
Minimum Coping (Df) =	0.750	IN
P-LOADS:		
XP1	0.00	FT
P1	2.165	K
XP2	21,313	FT
P2	0.396	K
XP3	42.625	FT
P3	0.396	K
XP4	63.938	FT
P4	0.396	K
XP5	85,250	FT
P5	2.165	K

CALCULATION COVER SHEET

PROJECT		JOB NO.			CALC NO	D. S	HEET
I-75 / I-575 NORTHWEST CO	ORRIDOR	NH000-0073-	03(242)		BR#31	1	
SUBJECT			DISC	IPLINE			
Beam Design Output			STRU	UCTURAL			
CALCULATION STATUS	PRELIMINARY CO	ONFIRMED	SUP	SEDED	VOIDE	D INCON	/IPLETE
DESIGNATION			_				
							X
			-		-		
COMPUTER	SCP M.	AINFRAME	PC I	PROGRAM	VER	SION/RELEASE	E NO.
PROGRAM/TYPE		\bigcap	(\mathbf{x})	0007	_		
		\bigcirc	\odot	GDO1 BRSPA		06/26/2008	3
	X YES NO			DIXOI 7			
					<u> </u>		
Note 1: Georgia Department	of Transportation (GDOT) t	erminated Co	ntract Ni	umber TOU	RDPPI6007	2 for its conven	ience
the completion of all work und							
(a) These calculations were r				•			
and/or has not been fully verif	ed or checked. These calc	ulations are a	work-in-	-progress a	nd are prese	ented only as su	ch.
(b) Any user is cautioned that	the use of these calculation	ns and any rel	ated info	ormation or	calculations	, without access	s to
factors and without proper reg	ard for their purpose, could	l lead to erron	eous coi	nclusions.			
(c) If any such calculations or	=				-	_	ork
a complete confirmation of the			-	-	any such use	e.	
(d) GTP has no responsibility	for the use of this information	on not under i	ts direct	control.			
		.00.//	0.0.5)				
Beam design ouptput is include	ed for span 1, and spans 2	2&3 (beams 1,	3 & 5).				
							<u> </u>
A A	nation for convenience discover	n 47	47	IOD			11/20/02
	nation for convenience direction N FOR REVISION	n 17 TOTAL	17 LAST	JCR BY	CHECKED	APPROVED/	11/30/09 DATE
INO. KEASUI	N FOR REVIOION	NO. OF	SHEET		OLILONED	ACCEPTED	DATE
		SHEETS	NO.				
	RECO	RD OF REVIS	SIONS				1

PROJECT: <u>I-75 / I-575 NORTHWEST CORRIDOR</u>
JOB NUMBER <u>NH000-0073-03(242)</u>
CALC NO. <u>BR#31</u>

SUBJECT: Beam Design Output - Span 1 SHEET NO.
BY: JCR DATE: 11/30/2009 SHEET REV.

16-OCT-09 GEORGIA DEPARTMENT OF TRANSPORTATION PROB. NO. S2NW

11:34:01 PRECONSTUCTION DIVISION - OFFICE OF BRIDGE & STRUCTURAL DESIGN

SIMPLE SPAN

REVISED: JUNE 26, 2008

I-75 OVER NOONDAY CREEK - SPAN 1

SPAN DATA

BEAM D/A L.L.C. T L M LENGTH D.F.M. D.F.V. D.F.D. NPL CG 1 HS20 0 0 0 78.250 1.364 1.667 1.080 5

WDLNC WDLC SWLL E W BM FS FC WG TYPE STEE 0.880 0.646 0.000 29.00 0.000 27.00 1.400 0.490 572 WG TYPE STEEL

CONCENTRATED LOADS

X2 P2 Х3 P3 X4 P1 0.000 3.932 19.563 0.353 39.125 0.353 58.688 0.353 78.250 1.863 0.000 0.000 0.000 0.000 0.000

BEAM DATA

 ROLLED
 SECTION PROPERTIES
 PLATE GIRDER WEB
 TOP FLANGE
 BOTTOM FLANGE

 BEAM
 P NP
 I
 Y TOP
 Y BOT
 D
 T
 W
 T
 W
 T

 OWF
 0 0 0
 0 0 0
 0.000
 0.000
 48.00
 0.6250
 12.00
 0.7500
 12.00
 1.0000
 OWF 0

COMPOSITE SLAB

WIDTH THICKNESS COPING SHEAR CAPACITY ULTIMATE STRENGTH N=ES/EC 90.000 7.875 0.000 12.38 K/ROW 25.21 KIPS EACH 9

BOTTOM COVER PLATE TOP COVER PLATE CONSTANT X-BEGIN THICKNESS WIDTH LENGTH X-BEGIN THICKNESS WIDTH LENGTH W T 20.25 1.2500 12.00 37.75 0.00 0.0000 0.00 0.00 0 0

PLATE GIRDER PROPERTIES

 WEB
 TOP FLANGE
 BOTTOM FLANGE
 WEB AND FLANGES PROPERTIES

 DEPTH
 THICK
 WIDTH
 THICK
 AREA
 Y-TOP Y-BOTTOM
 I

 48.00
 0.6250
 12.00
 0.7500
 12.00
 1.0000
 51.000
 26.213
 23.537
 18202.5

WEB AND COVER PLATES

BOTTOM COVER PLATE TOP COVER PLATE X-BEGIN THICKNESS WIDTH LENGTH X-BEGIN THICKNESS WIDTH LENGTH 20.25 1.2500 12.00 37.75 0.00 0.7500 12.00

WEB WITH COVER PLATES PROPERTIES

AREA Y-TOP Y-BOTTOM I 54.000 27.528 22.472 19788.8

COMPOSITE SECTION PROPERTIES

WEB AND FLANGES WEB AND PLATES YTS YBS I Q SLAB YTC YTS YBS I Q SLAB 7.91 41.84 46748.5 933.3 16.74 8.86 41.14 51911.4 1008.0 I Q SLAB YTC 9 15.79 27 23.84 15.97 33.78 34092.4 25.11 17.24 32.76 37412.5

NUMBER OF SHEAR CONNECTORS NEEDED TO PROVIDE FOR ULTIMATE STRENGTH 197

NUMBER OF LONGITUDINAL STIFFENERS NEEDED 0

TRANSVERSE STIFFENERS NOT REQUIRED

SIMPLE SPAN OUTPUT DATA PROBLEM NUMBER S2NW

SP	GIRDER	P-LOAD				1/20 POI SIDEWK	NTS LIVE LOAD	RR-I
1	26.0	2.1	128.0	156.0	93.9	0.0	198.9 T	0.0
2	49.3	4.1	242.5	295.9	178.0	0.0	373.8 T	0.0
3	70.0	6.2	343.5	419.7	252.2	0.0	524.8 T	0.0
4	88.0	8.3	431.1	527.4	316.4	0.0	651.8 T	0.0
5	103.4	10.4	505.2	618.9	370.8	0.0	754.9 T	0.0
6	116.0	11.0	565.8	692.9	415.3	0.0	834.1 T	0.0
7	125.9	11.7	612.9	750.5	449.9	0.0	894.1 T	0.0
8	132.9	12.4	646.6	791.9	474.7	0.0	939.6 T	0.0
9	137.1	13.1	666.8	817.1	489.5	0.0	961.3 T	0.0
10	138.5	13.8	673.5	825.9	494.4	0.0	959.0 T	0.0
			STRESS	(PSI) A	AT SPAN 1	1/20 POIN	rs	

	MINIMUM	STRESS	MAX	IMUM STRI	ESS	ALLOWABLE	R FA	CTOR
SP	TOP-S	BOT-S	TOP-C	TOP-S	BOT-S	FS	TOP-S	BOT-S
1	3224	-3538	118	3628	-5673	27000	0.889	0.624
2	6114	-6708	223	6873	-10722	27000	0.890	0.626
3	8670	-9511	314	9736	-15146	27000	0.891	0.628
4	10892	-11945	391	12216	-18945	27000	0.892	0.631
5	12779	-14012	455	14312	-22119	27000	0.893	0.633
6	13861	-13806	482	15570	-21738	27000	0.890	0.635
7	15016	-14956	518	16847	-23458	27000	0.891	0.638
8	15843	-15780	545	17768	-24715	27000	0.892	0.638
9	16345	-16278	559	18314	-25419	27000	0.892	0.640
10	16519	-16450	559	18484	-25570	27000	0.894	0.643

			SHEARS	(KIPS) AT	SPAN 1	/20 POIN	TS	S2NW
SP	GIRDER	P-LOAD	NON-C.	TOT.NC	COMP.	SIDEWK	LIVE LOAD	RR-I
0	7.0	4.5	34.4	45.9	25.3	0.0	59.9 T	0.0
1	6.3	0.5	31.0	37.8	22.7	0.0	51.0 T	0.0
2	5.6	0.5	27.5	33.7	20.2	0.0	48.1 T	0.0
3	4.9	0.5	24.1	29.6	17.7	0.0	45.2 T	0.0
4	4.3	0.5	20.7	25.5	15.2	0.0	42.3 T	0.0
5	3.6	0.5	17.2	21.3	12.6	0.0	39.4 T	0.0
6	2.9	0.2	13.8	16.8	10.1	0.0	36.4 T	0.0
7	2.2	0.2	10.3	12.7	7.6	0.0	33.5 T	0.0
8	1.4	0.2	6.9	8.5	5.1	0.0	30.5 T	0.0
9	0.7	0.2	3.4	4.3	2.5	0.0	27.4 T	0.0
10	0.0	0.2	0.0	0.2	0.0	0.0	24.3 T	0.0

	DEAD	LOAD DE	FLECTION	S (INCHE	S)	S	HEAR
SP	GIRDER	P-LOAD	NON-C.	TOT.NC	COMP.	RANGE(KIPS)	CON.SPAC(IN)
0	0.000	0.000	0.000	0.000	0.000	59.9	10.35
1	0.043	0.004	0.212	0.259	0.083	52.4	11.82
2	0.086	0.008	0.417	0.511	0.163	51.3	12.09
3	0.125	0.012	0.611	0.748	0.238	50.5	12.27
4	0.161	0.015	0.787	0.964	0.306	49.8	12.46
5	0.193	0.018	0.942	1.153	0.367	49.0	12.67
6	0.220	0.021	1.072	1.313	0.417	48.4	13.18
7	0.241	0.023	1.176	1.440	0.458	48.3	13.21
8	0.257	0.024	1.252	1.533	0.487	48.4	13.18
9	0.266	0.025	1.298	1.590	0.505	48.6	13.13

LIVE LOAD DEFLECTIONS (INCHES)

10 0.270 0.026 1.314 1.609 0.511 48.6 13.12

TRUCK	LANE	MILITARY	RAILROAD	SIDEWALK	L/ 800
0.520	0.387	0.373	0.000	0.000	1.174

PROJECT: <u>I-75 / I-575 NORTHWEST CORRIDOR</u>
JOB NUMBER <u>NH000-0073-03(242)</u>

CALC NO. BR#31

SUBJECT:	Beam Design Output - Spans 2&3 (beam 1)	SHEET NO.
BY: <u>JCR</u>	DATE: <u>11/30/2009</u>	SHEET REV.

16-OCT-09 GEORGIA DEPARTMENT OF TRANSPORTATION PROB. NO. S2NW
11:44:08 PRECONSTUCTION DIVISION - OFFICE OF BRIDGE & STRUCTURAL DESIGN

SIMPLE SPAN REVISED: JUNE 26, 2008

I-75 OVER NOONDAY CREEK - SPANS 2 & 3 (Beam 1)

SPAN DATA

BEAM D/A L.L.C. T L M LENGTH D.F.M. D.F.V. D.F.D. NPL CG 1 HS20 0 0 0 101.250 1.545 1.824 1.080 6

WDLNC WDLC SWLL E W BM FS FC WG TYPE STEEL 1.041 0.668 0.000 29.00 0.000 27.00 1.400 0.490 572

CONCENTRATED LOADS

X1 P1 X2 P2 X3 P3 X4 P4 0.000 5.017 20.250 0.395 40.500 0.395 60.750 0.395 81.000 0.395 101.250 2.438 0.000 0.000 0.000 0.000

BEAM DATA

 ROLLED
 SECTION PROPERTIES
 PLATE GIRDER WEB
 TOP FLANGE
 BOTTOM FLANGE

 BEAM
 P NP
 I
 Y TOP
 Y BOT
 D
 T
 W
 T
 W
 T

 OWF
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

COMPOSITE SLAB

WIDTH THICKNESS COPING SHEAR CAPACITY ULTIMATE STRENGTH N=ES/EC 102.000 8.250 0.000 12.38 K/ROW 25.21 KIPS EACH 9

BOTTOM COVER PLATE TOP COVER PLATE CONSTANT
X-BEGIN THICKNESS WIDTH LENGTH X-BEGIN THICKNESS WIDTH LENGTH W T
25.63 2.0000 16.00 50.00 25.63 1.1250 12.00 50.00 0 0

PLATE GIRDER PROPERTIES

 WEB
 TOP FLANGE
 BOTTOM FLANGE
 WEB AND FLANGES PROPERTIES

 DEPTH
 THICK
 WIDTH
 THICK
 AREA
 Y-TOP Y-BOTTOM
 I

 48.00
 0.6250
 12.00
 0.7500
 16.00
 1.3750
 61.000
 30.057
 20.068
 22801.3

WEB AND COVER PLATES

 BOTTOM
 COVER
 PLATE
 TOP
 COVER
 PLATE

 X-BEGIN
 THICKNESS WIDTH
 LENGTH
 X-BEGIN
 THICKNESS WIDTH
 LENGTH

 25.63
 2.0000
 16.00
 50.00
 25.63
 1.1250
 12.00
 50.00

WEB WITH COVER PLATES PROPERTIES

AREA Y-TOP Y-BOTTOM I 75.500 31.329 19.796 31010.8

COMPOSITE SECTION PROPERTIES

WEB AND FLANGES WEB AND PLATES

N YTC YTS YBS I Q SLAB YTC YTS YBS I Q SLAB
9 17.77 9.14 40.98 67417.0 1275.7 19.96 11.71 39.41 84046.5 1480.9
27 27.00 18.37 31.75 47611.7 29.22 20.97 30.16 58917.0

NUMBER OF SHEAR CONNECTORS NEEDED TO PROVIDE FOR ULTIMATE STRENGTH 234

NUMBER OF LONGITUDINAL STIFFENERS NEEDED 0

TRANSVERSE STIFFENERS NOT REQUIRED

SIMPLE SPAN OUTPUT DATA PROBLEM NUMBER S2NW

2 108.2 8.0 480.2 596.5 308.2 0.0 555.5 T 0.0 3 154.4 12.0 680.3 846.7 436.6 0.0 781.6 T 0.0 4 195.2 16.0 853.8 1065.0 547.8 0.0 973.4 T 0.0 5 230.7 18.0 1000.5 1249.2 642.0 0.0 1130.8 T 0.0 6 260.3 20.0 1120.5 1400.9 719.0 0.0 1253.8 T 0.0 7 283.4 22.0 1213.9 1519.3 779.0 0.0 1347.7 T 0.0 8 299.8 24.0 1280.6 1604.5 821.8 0.0 1417.8 T 0.0 9 309.7 24.0 1320.6 1654.4 847.4 0.0 1453.6 T 0.0									
2 108.2 8.0 480.2 596.5 308.2 0.0 555.5 T 0.0 3 154.4 12.0 680.3 846.7 436.6 0.0 781.6 T 0.0 4 195.2 16.0 853.8 1065.0 547.8 0.0 973.4 T 0.0 5 230.7 18.0 1000.5 1249.2 642.0 0.0 1130.8 T 0.0 6 260.3 20.0 1120.5 1400.9 719.0 0.0 1253.8 T 0.0 7 283.4 22.0 1213.9 1519.3 779.0 0.0 1347.7 T 0.0 8 299.8 24.0 1280.6 1604.5 821.8 0.0 1417.8 T 0.0 9 309.7 24.0 1320.6 1654.4 847.4 0.0 1453.6 T 0.0 10 313.0 24.0 1334.0 1671.0 856.0 0.0 1454.9 T 0.0	SP	GIRDER	P-LOAD						RR-I
3 154.4 12.0 680.3 846.7 436.6 0.0 781.6 T 0.0 4 195.2 16.0 853.8 1065.0 547.8 0.0 973.4 T 0.0 5 230.7 18.0 1000.5 1249.2 642.0 0.0 1130.8 T 0.0 6 260.3 20.0 1120.5 1400.9 719.0 0.0 1253.8 T 0.0 7 283.4 22.0 1213.9 1519.3 779.0 0.0 1347.7 T 0.0 8 299.8 24.0 1280.6 1604.5 821.8 0.0 1417.8 T 0.0 9 309.7 24.0 1320.6 1654.4 847.4 0.0 1453.6 T 0.0 10 313.0 24.0 1334.0 1671.0 856.0 0.0 1454.9 T 0.0	1	56.8	4.0	253.5	314.2	162.6	0.0	294.9	T 0.0
4 195.2 16.0 853.8 1065.0 547.8 0.0 973.4 T 0.0 5 230.7 18.0 1000.5 1249.2 642.0 0.0 1130.8 T 0.0 6 260.3 20.0 1120.5 1400.9 719.0 0.0 1253.8 T 0.0 7 283.4 22.0 1213.9 1519.3 779.0 0.0 1347.7 T 0.0 8 299.8 24.0 1280.6 1604.5 821.8 0.0 1417.8 T 0.0 9 309.7 24.0 1320.6 1654.4 847.4 0.0 1453.6 T 0.0 10 313.0 24.0 1334.0 1671.0 856.0 0.0 1454.9 T 0.0 1	2	108.2	8.0	480.2	596.5	308.2	0.0	555.5	т 0.0
5 230.7 18.0 1000.5 1249.2 642.0 0.0 1130.8 T 0.0 6 260.3 20.0 1120.5 1400.9 719.0 0.0 1253.8 T 0.0 7 283.4 22.0 1213.9 1519.3 779.0 0.0 1347.7 T 0.0 8 299.8 24.0 1280.6 1604.5 821.8 0.0 1417.8 T 0.0 9 309.7 24.0 1320.6 1654.4 847.4 0.0 1453.6 T 0.0 10 313.0 24.0 1334.0 1671.0 856.0 0.0 1454.9 T 0.0	3	154.4	12.0	680.3	846.7	436.6	0.0	781.6	0.0
6 260.3 20.0 1120.5 1400.9 719.0 0.0 1253.8 T 0.0 7 283.4 22.0 1213.9 1519.3 779.0 0.0 1347.7 T 0.0 8 299.8 24.0 1280.6 1604.5 821.8 0.0 1417.8 T 0.0 9 309.7 24.0 1320.6 1654.4 847.4 0.0 1453.6 T 0.0 10 313.0 24.0 1334.0 1671.0 856.0 0.0 1454.9 T 0.0 1	4	195.2	16.0	853.8	1065.0	547.8	0.0	973.4	0.0
7 283.4 22.0 1213.9 1519.3 779.0 0.0 1347.7 T 0.0 8 299.8 24.0 1280.6 1604.5 821.8 0.0 1417.8 T 0.0 9 309.7 24.0 1320.6 1654.4 847.4 0.0 1453.6 T 0.0 10 313.0 24.0 1334.0 1671.0 856.0 0.0 1454.9 T 0.0	5	230.7	18.0	1000.5	1249.2	642.0	0.0	1130.8	0.0
8 299.8 24.0 1280.6 1604.5 821.8 0.0 1417.8 T 0.0 9 309.7 24.0 1320.6 1654.4 847.4 0.0 1453.6 T 0.0 10 313.0 24.0 1334.0 1671.0 856.0 0.0 1454.9 T 0.0	6	260.3	20.0	1120.5	1400.9	719.0	0.0	1253.8	T 0.0
9 309.7 24.0 1320.6 1654.4 847.4 0.0 1453.6 T 0.0 10 313.0 24.0 1334.0 1671.0 856.0 0.0 1454.9 T 0.0	7	283.4	22.0	1213.9	1519.3	779.0	0.0	1347.7	0.0
10 313.0 24.0 1334.0 1671.0 856.0 0.0 1454.9 T 0.0	8	299.8	24.0	1280.6	1604.5	821.8	0.0	1417.8	T 0.0
	9	309.7	24.0	1320.6	1654.4	847.4	0.0	1453.6	T 0.0
STRESS (PSI) AT SPAN 1/20 POINTS	10	313.0	24.0	1334.0	1671.0	856.0	0.0	1454.9	0.0
				STRESS	(PSI)	AT SPAN 1	/20 POINT	S	

	MINIMUM	STRESS	MAX	IMUM STRE	ESS	ALLOWABLE	R FA	CTOR
SP	TOP-S	BOT-S	TOP-C	TOP-S	BOT-S	FS	TOP-S	BOT-S
1	5723	-4620	144	6203	-6771	27000	0.923	0.682
2	10862	-8765	272	11766	-12817	27000	0.923	0.684
3	15415	-12436	384	16687	-18137	27000	0.924	0.686
4	19383	-15631	480	20967	-22732	27000	0.924	0.688
5	22733	-18331	559	24573	-26579	27000	0.925	0.690
6	20054	-15147	555	22151	-22202	27000	0.905	0.682
7	21745	-16422	598	23999	-24006	27000	0.906	0.684
8	22960	-17337	630	25332	-25316	27000	0.906	0.685
9	23675	-17877	647	26106	-26057	27000	0.907	0.686
10	23913	-18057	649	26347	-26244	27000	0.908	0.688

			SHEARS	(KIPS) AT	SPAN 1	/20 POIN	TS	S2NW
SP	GIRDER	P-LOAD	NON-C.	TOT.NC	COMP.	SIDEWK	LIVE LOAD	RR-I
0	11.7	5.8	52.7	70.2	33.8	0.0	67.1 T	0.0
1	10.7	0.8	47.4	58.9	30.4	0.0	58.5 T	0.0
2	9.6	0.8	42.2	52.6	27.1	0.0	55.3 T	0.0
3	8.6	0.8	36.9	46.3	23.7	0.0	52.1 T	0.0
4	7.5	0.8	31.6	39.9	20.3	0.0	48.9 T	0.0
5	6.5	0.4	26.4	33.2	16.9	0.0	45.7 T	0.0
6	5.2	0.4	21.1	26.7	13.5	0.0	42.4 T	0.0
7	3.9	0.4	15.8	20.1	10.1	0.0	39.2 T	0.0
8	2.6	0.4	10.5	13.5	6.8	0.0	35.8 T	0.0
9	1.3	0.0	5.3	6.6	3.4	0.0	32.5 T	0.0
10	0.0	0.0	0.0	0.0	0.0	0.0	29.1 T	0.0

	DEAD LOAD DEFLECTIONS (INCHES) SHEAR										
SP	GIRDER	P-LOAD	NON-C.	TOT.NC	COMP.	RANGE (KIPS)	CON.SPAC(IN)				
0	0.000	0.000	0.000	0.000	0.000	67.1	9.75				
1	0.113	0.009	0.487	0.609	0.159	60.1	10.89				
2	0.222	0.017	0.958	1.197	0.312	59.2	11.05				
3	0.323	0.025	1.396	1.745	0.456	58.4	11.20				
4	0.415	0.032	1.789	2.236	0.585	57.6	11.36				
5	0.493	0.038	2.125	2.657	0.698	57.3	11.41				
6	0.557	0.043	2.401	3.001	0.791	57.5	12.23				
7	0.609	0.047	2.621	3.277	0.865	57.8	12.16				
8	0.647	0.050	2.782	3.479	0.919	58.1	12.09				
9	0.670	0.052	2.879	3.601	0.952	58.2	12.06				

LIVE LOAD DEFLECTIONS (INCHES)

10 0.677 0.053 2.912 3.642 0.963 58.3 12.06

TRUCK	LANE	MILITARY	RAILROAD	SIDEWALK	L/ 800
0.718	0.615	0.499	0.000	0.000	1.519

PROJECT: <u>I-75 / I-575 NORTHWEST CORRIDOR</u>
JOB NUMBER <u>NH000-0073-03(242)</u>

CALC NO. BR#31

SUBJECT:	Beam Design Output - Spans 2&3 (beam 3)	SHEET NO.
BY: <u>JCR</u>	DATE: <u>11/30/2009</u>	SHEET REV.

16-OCT-09 GEORGIA DEPARTMENT OF TRANSPORTATION PROB. NO. S2NW 11:38:33 PRECONSTUCTION DIVISION - OFFICE OF BRIDGE & STRUCTURAL DESIGN

SIMPLE SPAN REVISED: JUNE 26, 2008

I-75 OVER NOONDAY CREEK - SPANS 2 & 3 (Beam 3)

DJC 10/21/07

SPAN DATA

BEAM D/A L.L.C. T L M LENGTH D.F.M. D.F.V. D.F.D. NPL CG 1 HS20 0 0 0 93.250 1.545 1.824 1.080 6

WDLNC WDLC SWLL E W BM FS FC WG TYPE STEEL 1.042 0.668 0.000 29.00 0.000 27.00 1.400 0.490 572

CONCENTRATED LOADS

X1 P1 X2 P2 X3 P3 X4 P4 0.000 5.017 18.650 0.395 37.300 0.395 55.950 0.395 74.600 0.395 93.250 2.438 0.000 0.000 0.000 0.000

BEAM DATA

 ROLLED
 SECTION PROPERTIES
 PLATE GIRDER WEB
 TOP FLANGE
 BOTTOM FLANGE

 BEAM
 P NP
 I
 Y TOP
 Y BOT
 D
 T
 W
 T
 W
 T

 OWF
 0 0
 0 0
 0 000
 0 000
 48.00
 0 06250
 12.00
 0 0.7500
 14.00
 1.3750

COMPOSITE SLAB

WIDTH THICKNESS COPING SHEAR CAPACITY ULTIMATE STRENGTH N=ES/EC 102.000 8.250 0.000 12.38 K/ROW 25.21 KIPS EACH 9

BOTTOM COVER PLATE TOP COVER PLATE CONSTANT

X-BEGIN THICKNESS WIDTH LENGTH X-BEGIN THICKNESS WIDTH LENGTH W T

24.21 2.0000 14.00 46.00 24.21 1.0000 12.00 46.00 0 0

PLATE GIRDER PROPERTIES

 WEB
 TOP FLANGE
 BOTTOM FLANGE
 WEB AND FLANGES PROPERTIES

 DEPTH
 THICK
 WIDTH
 THICK
 AREA
 Y-TOP Y-BOTTOM
 I

 48.00
 0.6250
 12.00
 0.7500
 14.00
 1.3750
 58.250
 29.142
 20.983
 21719.2

WEB AND COVER PLATES

 BOTTOM
 COVER
 PLATE
 TOP
 COVER
 PLATE

 X-BEGIN
 THICKNESS WIDTH
 LENGTH
 X-BEGIN
 THICKNESS WIDTH
 LENGTH

 24.21
 2.0000
 14.00
 46.00
 24.21
 1.0000
 12.00
 46.00

WEB WITH COVER PLATES PROPERTIES

AREA Y-TOP Y-BOTTOM I 70.000 30.800 20.200 28118.5

COMPOSITE SECTION PROPERTIES

WEB AND FLANGES WEB AND PLATES

N YTC YTS YBS I Q SLAB YTC YTS YBS I Q SLAB
9 16.99 8.49 41.63 62569.5 1203.0 19.08 10.83 40.17 77476.4 1398.1
27 25.96 17.46 32.67 44705.2 28.29 20.04 30.96 54599.4

NUMBER OF SHEAR CONNECTORS NEEDED TO PROVIDE FOR ULTIMATE STRENGTH 234

NUMBER OF LONGITUDINAL STIFFENERS NEEDED 0

TRANSVERSE STIFFENERS NOT REQUIRED

SIMPLE SPAN OUTPUT DATA PROBLEM NUMBER S2NW

			MOMENTS	(K-FT.)	AT SPAN	1/20 POI	NTS	
SP	GIRDER	P-LOAD	NON-C.	TOT.NC	COMP.	SIDEWK	LIVE LOAD	RR-I
1	45.2	3.7	215.2	264.0	138.0	0.0	270.9 T	0.0
2	86.0	7.4	407.7	501.1	261.4	0.0	509.9 T	0.0
3	122.6	11.1	577.6	711.3	370.3	0.0	717.1 T	0.0
4	154.8	14.7	724.9	894.4	464.7	0.0	892.4 T	0.0
5	182.8	16.6	849.4	1048.8	544.6	0.0	1035.8 T	0.0
6	206.1	18.4	951.4	1175.9	609.9	0.0	1147.3 T	0.0
7	224.3	20.3	1030.7	1275.2	660.7	0.0	1232.3 T	0.0
8	237.3	22.1	1087.3	1346.7	697.0	0.0	1296.0 T	0.0
9	245.1	22.1	1121.3	1388.5	718.8	0.0	1327.9 T	0.0
10	247.7	22.1	1132.6	1402.4	726.1	0.0	1327.8 T	0.0

STRESS (PSI) AT SPAN 1/20 POINTS

	MINIMUM	STRESS	MAX	IMUM STR	ESS	ALLOWABLE	R FA	CTOR
SP	TOP-S	BOT-S	TOP-C	TOP-S	BOT-S	FS	TOP-S	BOT-S
1	4898	-4270	133	5339	-6433	27000	0.917	0.664
2	9293	-8101	252	10124	-12173	27000	0.918	0.666
3	13187	-11492	355	14355	-17218	27000	0.919	0.667
4	16579	-14443	443	18032	-21568	27000	0.919	0.670
5	19438	-16933	515	21125	-25203	27000	0.920	0.672
6	18142	-14286	517	20066	-21425	27000	0.904	0.667
7	19671	-15488	556	21738	-23156	27000	0.905	0.669
8	20771	-16352	586	22944	-24415	27000	0.905	0.670
9	21416	-16860	601	23643	-25122	27000	0.906	0.671
10	21632	-17030	603	23859	-25292	27000	0.907	0.673

SHEARS (KIPS) AT SPAN 1/20 POINTS S2NW SP GIRDER P-LOAD NON-C. TOT.NC COMP. SIDEWK LIVE LOAD RR-I 0 10.1 5.8 48.6 64.5 31.1 0.0 67.0 T 0.0 9.2 0.8 43.7 53.7 28.0 0.0 58.3 T 1 0.0 2 8.3 0.8 38.9 48.0 24.9 0.0 55.1 T 0.0 7.4 0.8 34.0 42.2 21.8 3 0.0 51.9 T 0.0 4 6.5 0.8 29.1 36.4 18.7 0.0 48.7 T 0.0 5 5.5 0.4 24.3 30.2 15.6 0.0 45.4 T 0.0 4.5 0.4 19.4 24.3 12.5 0.0 42.1 T 6 0.0 7 3.3 0.4 14.6 18.3 9.3 0.0 38.8 T 0.0 0.4 9.7 12.3 6.2 0.0 8 2.2 35.5 T 0.0 9 1.1 0.0 4.9 6.0 3.1 0.0 32.1 T 0.0 10 0.0 0.0 0.0 0.0 0.0 0.0 28.7 T 0.0

	DEAD	LOAD DE	FLECTION	S (INCHE	SHEAR		
SP	GIRDER	P-LOAD	NON-C.	TOT.NC	COMP.	RANGE (KIPS)	CON.SPAC(IN)
0	0.000	0.000	0.000	0.000	0.000	67.0	9.61
1	0.082	0.007	0.379	0.468	0.122	59.9	10.74
2	0.161	0.015	0.745	0.920	0.241	58.9	10.93
3	0.235	0.021	1.086	1.342	0.352	58.1	11.08
4	0.302	0.027	1.394	1.722	0.452	57.3	11.24
5	0.359	0.033	1.658	2.049	0.538	56.7	11.36
6	0.407	0.037	1.876	2.319	0.610	56.6	12.12
7	0.445	0.040	2.050	2.534	0.668	56.9	12.06
8	0.472	0.043	2.176	2.691	0.710	57.2	12.00
9	0.489	0.044	2.253	2.786	0.735	57.4	11.95
10	0.495	0.045	2.278	2.817	0.744	57.4	11.94

LIVE LOAD DEFLECTIONS (INCHES)

TRUCK	LANE	MILITARY	RAILROAD	SIDEWALK	L/ 800
0.605	0.494	0.424	0.000	0.000	1.399

PROJECT: <u>I-75 / I-575 NORTHWEST CORRIDOR</u>
JOB NUMBER <u>NH000-0073-03(242)</u>

CALC NO. BR#31

SUBJECT:	Beam Design Output - Spans 2&3 (beam 5)	SHEET NO.
BY: <u>JCR</u>	DATE: <u>11/30/2009</u>	SHEET REV.

16-OCT-09 GEORGIA DEPARTMENT OF TRANSPORTATION PROB. NO. S2NW 11:36:16 PRECONSTUCTION DIVISION - OFFICE OF BRIDGE & STRUCTURAL DESIGN

SIMPLE SPAN

REVISED: JUNE 26, 2008

I-75 OVER NOONDAY CREEK - SPANS 2 & 3 (Beam 5)

SPAN DATA

BEAM D/A L.L.C. T L M LENGTH D.F.M. D.F.V. D.F.D. NPL CG 1 HS20 0 0 0 85.250 1.545 1.824 1.080 5

WDLNC WDLC SWLL E W BM FS FC WG TYPE STEEL 1.040 0.668 0.000 29.00 0.000 27.00 1.400 0.490 572

CONCENTRATED LOADS

X1 P1 X2 P2 X3 P3 X4 P4 0.000 2.165 21.313 0.396 42.625 0.396 63.938 0.396 85.250 2.165 0.000 0.000 0.000 0.000 0.000

BEAM DATA

 ROLLED
 SECTION PROPERTIES
 PLATE GIRDER WEB
 TOP FLANGE
 BOTTOM FLANGE

 BEAM
 P NP
 I
 Y TOP
 Y BOT
 D
 T
 W
 T
 W
 T

 OWF
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

COMPOSITE SLAB

WIDTH THICKNESS COPING SHEAR CAPACITY ULTIMATE STRENGTH N=ES/EC 102.000 8.250 0.000 12.38 K/ROW 25.21 KIPS EACH 9

BOTTOM COVER PLATE TOP COVER PLATE CONSTANT
X-BEGIN THICKNESS WIDTH LENGTH X-BEGIN THICKNESS WIDTH LENGTH W T
22.23 1.7500 12.00 42.00 0.00 0.0000 0.00 0.00 0 0

PLATE GIRDER PROPERTIES

 WEB
 TOP FLANGE
 BOTTOM FLANGE
 WEB AND FLANGES PROPERTIES

 DEPTH
 THICK
 WIDTH
 THICK
 AREA
 Y-TOP Y-BOTTOM
 I

 48.00
 0.6250
 12.00
 0.7500
 12.00
 1.2500
 54.000
 27.528
 22.472
 19788.8

WEB AND COVER PLATES

 BOTTOM
 COVER
 PLATE
 TOP
 COVER
 PLATE

 X-BEGIN
 THICKNESS WIDTH
 LENGTH
 X-BEGIN
 THICKNESS WIDTH
 LENGTH

 22.23
 1.7500
 12.00
 42.00
 0.00
 0.7500
 12.00
 0.00

WEB WITH COVER PLATES PROPERTIES

AREA Y-TOP Y-BOTTOM I 60.000 29.800 20.700 22577.0

COMPOSITE SECTION PROPERTIES

WEB AND FLANGES WEB AND PLATES

N YTC YTS YBS I Q SLAB YTC YTS YBS I Q SLAB
9 15.71 7.46 42.54 54614.6 1083.5 17.39 9.14 41.36 65169.7 1239.9

27 24.19 15.94 34.06 39764.4 26.45 18.20 32.30 46361.0

NUMBER OF SHEAR CONNECTORS NEEDED TO PROVIDE FOR ULTIMATE STRENGTH 234

NUMBER OF LONGITUDINAL STIFFENERS NEEDED 0

TRANSVERSE STIFFENERS NOT REQUIRED

SIMPLE SPAN OUTPUT DATA PROBLEM NUMBER S2NW

SP	GIRDER				AT SPAN 1/ COMP. S		NTS LIVE LOAD	RR-I
1	33.5	2.5	179.5	215.6	115.3	0.0	246.7 T	0.0
2	63.7	5.1	340.1	408.9	218.5	0.0	464.0 T	0.0
3	90.5	7.6	481.8	580.0	309.5	0.0	651.9 T	0.0
4	114.0	10.1	604.7	728.8	388.4	0.0	810.6 T	0.0
5	134.2	12.7	708.6	855.5	455.1	0.0	939.8 T	0.0
6	150.9	13.5	793.6	958.0	509.7	0.0	1039.8 T	0.0
7	163.9	14.3	859.8	1038.0	552.2	0.0	1115.7 T	0.0
8	173.2	15.2	907.0	1095.4	582.6	0.0	1173.0 T	0.0
9	178.8	16.0	935.3	1130.2	600.8	0.0	1201.0 T	0.0
10	180.7	16.9	944.8	1142.4	606.8	0.0	1199.6 T	0.0
			STRESS	(PSI) A	T SPAN 1/2	0 POINT	rs	

	MINIMUM	STRESS	MAX	IMUM STR	ESS	ALLOWABLE	R FA	CTOR
SP	TOP-S	BOT-S	TOP-C	TOP-S	BOT-S	FS	TOP-S	BOT-S
1	4153	-4122	125	4557	-6427	27000	0.911	0.641
2	7876	-7817	237	8637	-12153	27000	0.912	0.643
3	11170	-11084	333	12239	-17177	27000	0.913	0.645
4	14035	-13923	415	15364	-21499	27000	0.913	0.648
5	16469	-16334	483	18011	-25118	27000	0.914	0.650
6	17576	-14802	499	19325	-22721	27000	0.909	0.651
7	19043	-16037	536	20920	-24535	27000	0.910	0.654
8	20095	-16922	564	22068	-25856	27000	0.911	0.654
9	20731	-17457	579	22751	-26604	27000	0.911	0.656
10	20953	-17641	580	22970	-26778	27000	0.912	0.659
		SH	EARS (KIP	S) AT SPA	N 1/20 P	OINTS	S2	NW

			SHEARS	(KIPS) AT	SPAN 1	/20 POIN	TS	S2NW
SP	GIRDER	P-LOAD	NON-C.	TOT.NC	COMP.	SIDEWK	LIVE LOAD	RR-I
0	8.3	2.8	44.3	55.3	28.5	0.0	66.8 T	0.0
1	7.5	0.6	39.9	48.0	25.6	0.0	58.1 T	0.0
2	6.7	0.6	35.5	42.7	22.8	0.0	54.9 T	0.0
3	5.9	0.6	31.0	37.5	19.9	0.0	51.6 T	0.0
4	5.1	0.6	26.6	32.3	17.1	0.0	48.3 T	0.0
5	4.3	0.6	22.2	27.1	14.2	0.0	45.1 T	0.0
6	3.5	0.2	17.7	21.4	11.4	0.0	41.7 T	0.0
7	2.6	0.2	13.3	16.1	8.5	0.0	38.4 T	0.0
8	1.7	0.2	8.9	10.8	5.7	0.0	35.0 T	0.0
9	0.9	0.2	4.4	5.5	2.8	0.0	31.6 T	0.0
10	0.0	0.2	0.0	0.2	0.0	0.0	28.2 T	0.0

	DEAD	LOAD DE	FLECTION	S (INCHE	S)	SI	HEAR
SP	GIRDER	P-LOAD	NON-C.	TOT.NC	COMP.	RANGE(KIPS)	CON.SPAC(IN)
0	0.000	0.000	0.000	0.000	0.000	66.8	9.34
1	0.060	0.005	0.314	0.379	0.099	59.7	10.45
2	0.117	0.010	0.618	0.746	0.195	58.6	10.66
3	0.172	0.015	0.904	1.091	0.285	57.7	10.81
4	0.221	0.020	1.164	1.405	0.366	56.9	10.98
5	0.264	0.024	1.390	1.678	0.437	56.0	11.15
6	0.301	0.027	1.580	1.907	0.497	55.7	11.67
7	0.330	0.029	1.731	2.090	0.544	55.8	11.66
8	0.351	0.031	1.842	2.224	0.579	56.0	11.61
9	0.364	0.032	1.909	2.305	0.599	56.3	11.57

LIVE LOAD DEFLECTIONS (INCHES)

10 0.368 0.033 1.931 2.331 0.606 56.4 11.54

TRUCK	LANE	MILITARY	RAILROAD	SIDEWALK	L/ 800
0.544	0.423	0.385	0.000	0.000	1.279

CALCULATION COVER SHEET

PROJEC [*]	Т		JOB NO.			CALC NO	D. S	HEET
I-75 / I-57	5 NORTHWEST COR	RIDOR	NH000-0073-	03(242)		BR#31	1	
SUBJECT	Γ			DISCI	PLINE		_	
Shear Stu	ud Spacing Calculations	3		STRU	CTURAL			
			ONEIDNED	OL ID		VOIDE		ADI ETE
	CULATION STATUS DESIGNATION	PRELIMINARY (CONFIRMED	SUPS	SEDED	VOIDE	D INCON	/IPLETE
								X
	COMPLITED	SCP N	MAINFRAME	PC P	ROGRAM	IVED	SION/RELEASE	- NO
	COMPUTER OGRAM/TYPE	X YES NO	VIAINFRAIVIE	x	Excel		2003	E NO.
the compl (a) These and/or ha (b) Any us factors an (c) If any a complet (d) GTP h	letion of all work under e calculations were not is not been fully verified ser is cautioned that the ind without proper regard such calculations or any te confirmation of the in in in as no responsibility for	Transportation (GDOT) that contract and directe completed at the time of or checked. These calculation of their purpose, could be use of these calculations of their purpose, could be use of this information contained formation contained the use of this information	ed that the work of GDOT's direct culations are a send any related lead to errone therein is used rein should be plain not under its	with resp tion and the work-in-pr ated informated informated in future veriformed is direct co	pect to these the information or continuous or continuous of the lusions. work efforts or control.	se calculation tion contained are preser alculations, s or any follony such use.	ons be discontinued herein is not of the design as such without access the control of the design work on design work access the control of the design work access the design was access to the design work access the design was access to the design work access the design was access to the design	ned. complete n. o
Design ca	alculations for steel bea	m shear stud spacings a	are included to	r span 1,	and spans	2&3 (beam	s 1, 3 & 5).	
-								
				1				
A	As per GDOT's terminat	tion for convenience directi	on 13	13	JCR			11/30/09
NO.	•	FOR REVISION	TOTAL NO. OF SHEETS	LAST SHEET NO.	BY	CHECKED	APPROVED/ ACCEPTED	DATE
l		DEC	ORD OF REVI	SIONS				

PROJECT: <u>I-75 / I-575 NORTHWEST CORRIDOR</u>
JOB NUMBER <u>NH000-0073-03(242)</u>
CALC NO. <u>BR#31</u>

SUBJECT: Shear Stud Spacing Calculations - Span 1 SHEET NO.
BY: JCR DATE: 11/30/2009 SHEET REV.

COUNTY: COBB P.I. NO: 713640

PROJECT: NH000-0575-01(028)

J.B. TRIMBLE, INC.

JOB NO: 31-6036 DESIGNED BY: SHG

DATE: 10/16/2009

PJG 10-21-09

STUD SHEAR CONNECTORS

Beam Type Plate Girder

Top Flange Width = 12"

Stud Ø = 0.75 "

No. of Studs = 4

$Z_r = \alpha d^2$ (kips / studs)						
α \ d (in)	0.5	0.75	1			
13000	3.25	7.31	13.00			
10600	2.65	5.96	10.60			
7850	1.96	4.42	7.85			
5500	1.38	3.09	5.50			

ADT (2001) = 1,000

ADT (2021) = 80,000

% TRUCKS = 4.4%

DIRECTIONAL = 100%

ADT (2031) = 119,500 in one direction

ADTT = 5,258 > 2500 USE 2,000,000 CYCLES

Z,	$= \alpha d^2$	kips / row)	
Number	of Studs :	3	
α \ d (in)	0.5	0.75	1
13000	9.75	21.94	39.00
10600	7.95	17.89	31.80
7850	5.89	13.25	23.55
5500	4.13	9.28	16.50

	$Z_r = \alpha d^2$ (kips / row) Number of Studs: 4						
α \ d	0.5	0.75	1				
13000	13.00	29.25	52.00				
10600	10.60	23.85	42.40				
7850	7.85	17.66	31.40				
5500	5.50	12.38	22.00				

 $E_c = 150^{1.5} 33 (f'_c)^{1/2}$

(AASHTO 10.38.5.1.2)

$S_U = 0.4 d^2 (f'_c E_c)^{1/2}$ (AASHTO								
d (in)	f'c (psi)	E _c (psi)	S _U (kips)					
0.5	3000	3320561	9.98					
0.75	3000	3320561	22.46					
1	3000	3320561	39.92					
0.5	3500	3586616	11.20					
0.75	3500	3586616	25.21					
1	3500	3586616	44.82					

AASHTO 10.38.2.4 The clear distance between the edge of a girder flange and the edge of the shear connector shall be not less than 1". Adjacent stud shear connectors shall not be closer than 4 diameters center to center.

GDOT calls for 3/4"∅ studs and 1 1/2" clear from edge of girder flange to CL of stud. Therefore, 4 studs are only allowed for beams with a minimum flange width of 12"+/-.

Shear Capacity (Z_r) = 12.38 K/Row

Ultimate Strength (S_U) = 25.21 kips

COUNTY: **COBB**P.I. NO: **713640**

PROJECT: NH000-0575-01(028)

J.B. TRIMBLE, INC.

JOB NO: **31-6036** DESIGNED BY: **SHG**

DATE: 10/16/2009

PJC 10/21/09

SHEAR STUD SPACING

Design Length = 78.25 ft.

Location	s
(ft.)	(in)
0.0	10.35
3.9	11.82
7.8	12.09
11.7	12.27
15.7	12.46
19.6	12.67
23.5	13.18
27.4	13.21
31.3	13.18
35.2	13.13
39.1	13.12

	Spacing 1	Spacing 2
Stud Spacing:	10 in.	13 in.

PROJECT: <u>I-75 / I-575 NORTHWEST CORRIDOR</u>
JOB NUMBER <u>NH000-0073-03(242)</u>
CALC NO. <u>BR#31</u>

SUBJECT: Shear Stud Spacing Calculations - Spans 2&3 (beam 1) SHEET NO.
BY: JCR DATE: 11/30/2009 SHEET REV.

COUNTY: **COBB**P.I. NO: **713640**

PROJECT: NH000-0575-01(028)

J.B. TRIMBLE, INC.

JOB NO: 31-6036

DESIGNED BY: SHG

DATE: 10/16/2009

STUD SHEAR CONNECTORS

Beam Type Plate Girder

Top Flange Width = 16"

Stud \emptyset = 0.75 "

No. of Studs = 4

$Z_r = \alpha d^2$ (kips / studs)			
$\alpha \setminus d$ (in)	0.5	0.75	1
13000	3.25	7.31	13.00
10600	2.65	5.96	10.60
7850	1.96	4.42	7.85
5500	1.38	3.09	5.50

ADT (2001) = 1,000

ADT (2021) = 80,000 % TRUCKS = 4.4%

DIRECTIONAL = 100%

ADT (2031) = 119,500 in one direction

ADTT = 5,258 > 2500

USE 2,000,000 CYCLES

$Z_r = \alpha d^2 \text{ (kips / row)}$			
Number of Studs: 3			
α\d (in) 0.5 0.75 1			
13000	9.75	21.94	39.00
10600	7.95	17.89	31.80
7850	5.89	13.25	23.55
5500	4.13	9.28	16.50

	$Z_r = \alpha d^2 \text{ (kips / row)}$			
	Number of Studs : 4			
α\d	α\d 0.5 0.75 1			
13000	13.00	29.25	52.00	
10600	10.60	23.85	42.40	
7850	7.85	17.66	31.40	
5500				

 $E_c = 150^{1.5} 33 (f'_c)^{1/2}$

(AASHTO 10.38.5.1.2)

$S_U = 0.4 d^2$	(f' _c E _c) ^½		(AASHTO
d (in)	f ' _c (psi)	E _c (psi)	S _U (kips)
0.5	3000	3320561	9.98
0.75	3000	3320561	22.46
1	3000	3320561	39.92
0.5	3500	3586616	11.20
0.75	3500	3586616	25.21
1	3500	3586616	44.82

AASHTO 10.38.2.4 The clear distance between the edge of a girder flange and the edge of the shear connector shall be not less than 1". Adjacent stud shear connectors shall not be closer than 4 diameters center to center.

GDOT calls for 3/4" \varnothing studs and 1 1/2" clear from edge of girder flange to CL of stud. Therefore, 4 studs are only allowed for beams with a minimum flange width of 12"+/-.

Shear Capacity (Z_r) = 12.38 K/Row

Ultimate Strength (S_U) = 25.21 kips

COUNTY: **COBB** P.I. NO: **713640**

PROJECT: NH000-0575-01(028)

J.B. TRIMBLE, INC.

JOB NO: 31-6036 DESIGNED BY: SHG

DATE: 10/16/2009

SHEAR STUD SPACING

Design Length = 101.25 ft.

	_
Location	s
(ft.)	(in)
0.0	9.75
5.1	10.89
10.1	11.05
15.2	11.20
20.3	11.36
25.3	11.41
30.4	12.23
35.4	12.16
40.5	12.09
45.6	12.06
50.6	12.06

	Spacing 1	Spacing 2
Stud Spacing:	9 in.	11 in.

PROJECT: <u>I-75 / I-575 NORTHWEST CORRIDOR</u>
JOB NUMBER <u>NH000-0073-03(242)</u>
CALC NO. <u>BR#31</u>

SUBJECT: Shear Stud Spacing Calculations - Spans 2&3 (beam 3) SHEET NO.
BY: JCR DATE: 11/30/2009 SHEET REV.

COUNTY: COBB P.I. NO: 713640

PROJECT: NH000-0575-01(028)

J.B. TRIMBLE, INC.

JOB NO: 31-6036 DESIGNED BY: SHG

DATE: 10/16/2009

DJE 10/21/09

STUD SHEAR CONNECTORS

Beam Type Plate Girder

5500

Top Flange Width = 12"

5.50

Stud Ø = 0.75 *

No. of Studs = 4

$Z_r = \alpha d^2$ (kips / studs)			
α \ d (in)	0.5	0.75	1
13000	3.25	7.31	13.00
10600	2.65	5.96	10.60
7850	1.96	4.42	7.85

3.09

1.38

ADT (2001) = 1,000 ADT (2021) = 80,000 % TRUCKS = 4.4% DIRECTIONAL = 100%

ADT (2031) = 119,500 in one direction

ADTT = 5,258 > 2500

USE 2,000,000 CYCLES

Z,	$= \alpha d^2$	kips / row)		
Number	of Studs:	3		
α \ d (in)	α \ d (in) 0.5 0.75 1			
13000	9.75	21.94	39.00	
10600	7.95	17.89	31.80	
7850	5.89	13.25	23.55	
5500	4.13	9.28	16.50	

	$a = \alpha d^2$ (of Studs :	-		
α\d	α\d 0.5 0.75 1			
13000	13.00	29.25	52.00	
10600	10.60	23.85	42.40	
7850	7.85	17.66	31.40	
5500	5.50	12.38	22.00	

$$E_c = 150^{1.5} 33 (f'_c)^{1/2}$$

(AASHTO 10.38.5.1.2)

$S_U = 0.4 d^2$	$S_U = 0.4 d^2 (f'_c E_c)^{\frac{1}{2}}$		(AASHTO
d (in)	f'c (psi)	E _c (psi)	S _U (kips)
0.5	3000	3320561	9.98
0.75	3000	3320561	22.46
1	3000	3320561	39.92
			11.00
0.5	3500	3586616	11.20
0.75	3500	3586616	25.21
1	3500	3586616	44.82

AASHTO 10.38.2.4 The clear distance between the edge of a girder flange and the edge of the shear connector shall be not less than 1". Adjacent stud shear connectors shall not be closer than 4 diameters center to center.

GDOT calls for 3/4"∅ studs and 1 1/2" clear from edge of girder flange to CL of stud. Therefore, 4 studs are only allowed for beams with a minimum flange width of 12"+/-.

Shear Capacity (Z_r) = 12.38 K/Row

Ultimate Strength (Su) = 25.21 kips

COUNTY: **COBB** P.I. NO: **713640**

PROJECT: NH000-0575-01(028)

J.B. TRIMBLE, INC.

JOB NO: 31-6036 DESIGNED BY: SHG

DATE: 10/16/2009

SHEAR STUD SPACING

Design Length = 93.25 ft.

Location	s
(ft.)	(in)
0.0	9.61
4.7	10.74
9.3	10.93
14.0	11.08
18.7	11.24
23.3	11.36
28.0	12.12
32.6	12.06
37.3	12.00
42.0	11.95
46.6	11.94

	Spacing 1	Spacing 2
Stud Spacing:	9 in.	11 in.

PROJECT: <u>I-75 / I-575 NORTHWEST CORRIDOR</u>
JOB NUMBER <u>NH000-0073-03(242)</u>
CALC NO. <u>BR#31</u>

SUBJECT: Shear Stud Spacing Calculations - Spans 2&3 (beam 5) SHEET NO.
BY: JCR DATE: 11/30/2009 SHEET REV.

COUNTY: COBB P.I. NO: 713640

PROJECT: NH000-0575-01(028)

J.B. TRIMBLE, INC.

JOB NO: 31-6036 DESIGNED BY: SHG

DATE: 10/16/2009

STUD SHEAR CONNECTORS

PTC 10/21/09

Beam Type Plate Girder

Top Flange Width = 12*

Stud Ø = 0.75 *

No. of Studs = 4

Z,	$= \alpha d^2$ (k	ips / studs)	
α \ d (in)	0.5	0.75	1
13000	3.25	7.31	13.00
10600	2.65	5.96	10.60
7850	1.96	4.42	7.85
5500	1.38	3.09	5.50

ADT (2001) = 1,000 ADT (2021) = 80,000 % TRUCKS = 4.4% DIRECTIONAL = 100%

ADT (2031) = 119,500 in one direction

ADTT = 5,258 > 2500

USE 2,000,000 CYCLES

Z,	$= \alpha d^2$	kips / row)	
Number	of Studs :	3	
α \ d (in)	0.5	0.75	1
13000	9.75	21.94	39.00
10600	7.95	17.89	31.80
7850	5.89	13.25	23.55
5500	4.13	9.28	16.50

	$Z_r = \alpha d^2$ (kips / row) Number of Studs : 4							
α\d	0.5	0.75	1					
13000	13.00	29.25	52.00					
10600	10.60	23.85	42.40					
7850	7.85	17.66	31.40					
5500	5.50	12.38	22.00					

 $E_c = 150^{1.5} 33 (f'_c)^{1/2}$

(AASHTO 10.38.5.1.2)

$S_U = 0.4 d^2 (f'_c E_c)^{1/2}$ (AASHTO							
d (in)	f'c (psi)	E _c (psi)	S _U (kips)				
0.5	3000	3320561	9.98				
0.75	3000	3320561	22.46				
1	3000	3320561	39.92				
0.5	3500	3586616	11.20				
0.75	3500	3586616	25.21				
1	3500	3586616	44.82				

AASHTO 10.38.2.4 The clear distance between the edge of a girder flange and the edge of the shear connector shall be not less than 1". Adjacent stud shear connectors shall not be closer than 4 diameters center to center.

GDOT calls for 3/4"∅ studs and 1 1/2" clear from edge of girder flange to CL of stud. Therefore, 4 studs are only allowed for beams with a minimum flange width of 12"+/-.

Shear Capacity (Z_r) = 12.38 K/Row

Ultimate Strength (S_U) = 25.21 kips

COUNTY: COBB P.I. NO: 713640

PROJECT: NH000-0575-01(028)

J.B. TRIMBLE, INC. JOB NO: 31-6036

DESIGNED BY: SHG

DATE: 10/16/2009

PSC 10/21/09

SHEAR STUD SPACING

Design Length = 85.25 ft.

Location	s
(ft.)	(in)
0.0	9.34
4.3	10.45
8.5	10.66
12.8	10.81
17.1	10.98
21.3	11.15
25.6	11.67
29.8	11.66
34.1	11.61
38.4	11.57
42.6	11.54

	Spacing 1	Spacing 2
Stud Spacing:	9 in.	11 in.

CALCULATION COVER SHEET

PROJEC	JECT		JOB NO.			CALC NO. SI		HEET
I-75 / I-57	5 NORTHWEST CO	RRIDOR	NH000-0073-03(242)			BR#31 1		
SUBJECT	Γ		-	DISCI	PLINE		_	
Bearing D	Bearing Design			STRU	CTURAL			
CALC	CULATION STATUS	PRELIMINARY	CONFIRMED	CLIDS	SEDED	VOIDE		1PLETE
	DESIGNATION	PRELIMINART	CONFIRMED	3073	סבטבט	VOIDE	D INCON	MPLETE
								X
		<u> </u>		<u> </u>			1.4	<u> </u>
	COMPUTER OGRAM/TYPE	SCP	MAINFRAME	PC P	ROGRAM Exce		SION/RELEASE 2003	NO.
		X YES NO						
	- '	Transportation (GDOT						
(a) These and/or ha (b) Any us factors an	e calculations were no s not been fully verifie ser is cautioned that the nd without proper rega	r that contract and direct completed at the time d or checked. These cane use of these calculating for their purpose, court	of GDOT's dired lculations are a ons and any rel ald lead to erron	ction and to work-in-pro ated inforro eous conc	he informa ogress an nation or o lusions.	ation contained are preser calculations,	ed herein is not on the only as such without access the only as the only as the only as the only and the only as t	complete n. o
a complet	te confirmation of the	ny information contained no information contained he or the use of this information.	erein should be	performed	prior to a	-	_	rk activity
Bearing D	Design calculations are	included for bearings a	at bents 1, 2, 3 a	ınd 4.				
	1			1	1			1
<u> </u>				+				
A	As per GDOT's termin	ation for convenience direc	tion 9	9	JCR			11/30/09
NO.		FOR REVISION	TOTAL NO. OF SHEETS	LAST SHEET	BY	CHECKED	APPROVED/ ACCEPTED	DATE
-	1	DE/	CORD OF REV		<u> </u>			L

PROJECT: <u>I-75 / I-575 NORTHWEST CORRIDOR</u>
JOB NUMBER <u>NH000-0073-03(242)</u>
CALC NO. <u>BR#31</u>

SUBJECT:Bearing DesignSHEET NO.BY:JCRDATE:11/30/2009SHEET REV.

COUNTY: **COBB** P.I. NO: **713640**

PROJECT: NH000-0575-01(028)

J.B. TRIMBLE, INC.

JOB NO: 31-6036 DESIGNED BY: SHG

DATE: 10/30/2009

SUGGESTED SHAPE AND SIZE OF SELF LUBRICATING BRONZE PLATES

		SIZE	AND MAXIN	MUM LOAD	
WLT			WITH SLOTS 2-3X13/16	PLAIN	
10	7	3.	-		140
20	8.	114			160
10	. 9	11			180
102	7	1			147
101	8	11/4			168.
102	9	11			189 .
15	6	1	131.	140	144
12	7,	1	155	164	168
12	8.	11/4	179	188.	192 .
12	9-	11			216

USE ONLY THOSE PLATES WHICH HAVE A MAXIMUM LOAD SHOWN

PURPOSE: To standardize plate sizes within the office so that plates may be stocked by suppliers, thus making them more economical.

DESIGN SPECIFICATION: Bronze plates shall conform to ASTM Designation B 22

Alloy B and supplemental specifications and shall have an allowable unit

stress of 2000 psi in compression.

LIMITATIONS: Sliding plate type bearings shall not be used where the anticipated total movement (expansion plus contraction) exceeds 3 inches for assemblies without anchor bolts through the flanges and 2 inches for assemblies with anchor bolts through the flanges.

When the gradient of the girder at the bearing exceeds 4.0%, the top of the upper plate (sole plate) shall be beveled to match the girder gradient.

COEFFICIENT OF FRICTION: For design purposes a value of 0.10 shall be used.

WORE: WIDTH OF LOS A. IS TO BE 2" LESS THAN WIDTH

. OF SC45 12

COUNTY: COBB P.I. NO: 713640

PROJECT: NH000-0575-01(028)

JOB NO: 31-6036 DESIGNED BY: SHG

DATE: 10/30/2009

BENTS 1 (All Beams) 3 BK (Beams 5 & 6) 4 (Beams 5 & 6)

FIXED BEARING CALCULATIONS

GENERAL INPUT:

Beam Type	Plate Girder	-	
R (Reaction) =	150.7	Kips	
Bottom Flange Thickness, t _{FLG} =	1.25	in	
W _{SP} =	12.00	in	
W _{BP} =	12.00	in	
L _{SP} =	12.00	in	
f'c =	3500	psi	
$F_b = 0.3f_c =$	1.050	ksi	

SOL	E PLATE:	M=RL/8	S=wt²/6	f _e =M/S
F _v =	36000 psi	AASHTO Tabl	e 10.2B	

 $F_{yb} = .55F_{y} =$ 19.8 ksi AASHTO 10.32.1A $t_{SP} = [3/4(RW_{SP})/(L_{SP}F_{YB})]^{1/2} =$ 2.39 in.

 $t'_{SP} = t_{SP} \cdot t_{FLG} =$ 1.14 29 mm

Rad (Radius) = 18.00 in $= t'_{SP} + Rad - [Rad^2 - (\frac{1}{2}L_{SP})^2]^{\frac{1}{2}} =$ 2.17 in -----> use = 2.25 57 mm

BASE (MASONR)		S _X =W _{SP} T _{BP} ² /6	f _a =M/S	
$L_{BP} = R/(W_{BP}Fb) =$	11.96 in> use =	12.00	in	305 mm
$t_{BP} = [3/4(RL_{BP})/(W_{BP}F_{YB})]^{1/2} =$	2.39 in> use =	2.50	in	64 mm

ALLOWABLE BEARING ON CONCRETE:

 $f_b = R/(L_{BP} * W_{BP}) =$ 1.046 ksi fb < Fb -> OK

	BASE PLAT	E		BEARING		
WIDTH	LENGTH	HEIGHT	WIDTH	LENGTH	HEIGHT	DEPTH
12"	12"	2.5"	12"	12"	2.25"	4.75*

COUNTY: COBB P.I. NO: 713640

PROJECT: NH000-0575-01(028)

JOB NO: 31-6036 DESIGNED BY: SHG

DATE: 10/30/2009

EXPANSION BEARING CALCULATIONS

BENTS 2 BK (All Beams) 2 AH (Beams 5 & 6) 3 AH (Beams 5 & 6)

GENERAL INPUT:

Beam Type	Plate Girder	▼	
R (Reaction) =	150.68	Kips	
Bottom Flange Thick, tFLG =	1.25	in	
W _{SP} =	12.00	in /	
W _{BZP} =	12.00	in	
W _{BP} =	12.00	in	
L _{SP} =	9.00	in	
L _{BP} =	12.00	in	

ALLOWABLE BEARING ON CONCRETE:

f'c =	3500	psi	
$F_b = 0.3f_c =$	1.050	ksi	
= R/(L _{BP} * W _{BP}) =	1.046	ksi	fb < Fb> OK

BRONZE PLATE WIDTH (WBZP):

TYPE = SELF LUBRICATING ASTM B22 ALLOY 911

BEARING CAPACITY = 2000 psi L_{BZP} = 6.28 in ---

L_{BZP} = 6.28 in -----> use = 7.0 in 178 mm

BASE (MASONRY) PLATE:

SOLE PLATE:

$$\begin{split} t_{\text{SP}} &= [3/4(\text{RW}_{\text{SP}})/(\text{L}_{\text{SP}}\text{F}_{\text{YB}}))^{\text{YB}} = & 2.76 & \text{in.} \\ t'_{\text{SP}} &= t_{\text{SP}} - t_{\text{FLG}} = & 1.51 & \text{in} ------> \text{use} = & 1.50 & \text{in} \\ & & \text{Rad (Radius)} = & 18.00 & \text{in} \\ T_{\text{SP}} &= t'_{\text{SP}} + \text{Rad} - [\text{Rad}^2 - (\text{½L}_{\text{BZP}})^2)^{\text{YB}} = & 1.84 & \text{in} -----> \text{use} = & 2.00 & \text{in} \\ \end{split}$$

BRONZE PLATE THICKNESS (tgzp):

$$A = 0.50 \quad \text{in} \\ t_{BZP} = (T_{SP} - t'_{SP}) + A = 1.00 \quad \text{in} \quad \text{25 mm} \\$$

BASE PLATE		SOLE PLATE			BRONZE PLATE			BEARING	
WIDTH	LENGTH	HEIGHT	WIDTH	LENGTH	HEIGHT	WIDTH	LENGTH	HEIGHT	DEPTH
12"	12"	1"	12"	9"	1.5*	12"	7*	1"	3.5"

COUNTY: COBB P.I. NO: 713640

PROJECT: NH000-0575-01(028)

JOB NO: 31-6036 DESIGNED BY: SHG

DATE: 10/30/2009

t_{SP} t_{FLO} t_{SP} t_{BP} L_{BP & L_{SP}}

FIXED BEARING CALCULATIONS

BENTS 3 BK (Beams 3 & 4) 4 (Beams 3 & 4)

	RAL INPUT:				
Beam Type	Plate Girder	₩			
R (Reaction) =	162.6	Kips			
ottom Flange Thickness, $t_{FLG} =$	1.375	in			35 mm
W _{SP} =					356 mm
$W_{BP} =$	14.00	in			356 mm
$L_{SP} =$	11.25	in			286 mm
f'c =	3500				
$F_b = 0.3f'_c =$	1.050	ksi	AASHTO Art.	8.15.2.1.3	
s	OLE PLATE:		M=RL/8	S=wt²/6	f _s =M/S
F _y =	36000	psi	AASHTO Table	e 10.2B	
$F_{yb} = .55F_{y} =$	19.8	ksi	AASHTO 10.3	2.1A	
$t_{SP} = [3/4(RW_{SP})/(L_{SP}F_{YB})]^{1/2} =$	2.77	in.			
$t'_{SP} = t_{SP} - t_{FLG} =$	1.39				35 mm
Rad (Radius) =	18.00	in			
t'_{SP} + Rad - $[Rad^2 - (\frac{1}{2}L_{SP})^2]^{\frac{1}{2}} =$		in> use =	2.50	in	64 mm
BASE (MASON	IRY) PLATE:	M=(R/W)(W/2)(W/4)=RW/8		S _X =W _{SP} T _{BP} ²	² /6 f _s =M/S
$L_{BP} = R/(W_{BP}Fb) =$	11.06	in> use =	11.25	in	286 mm
$t_{BP} = \left[3/4(RL_{BP})/(W_{BP}F_{YB})\right]^{1/\epsilon} =$	2.22	in> use =	2.25	in	57 mm

ALLOWABLE BEARING ON CONCRETE:

$f_b = R/(L_{BP} * W_{BP}) =$	1.032 ksi	fb < Fb> OK
.D /Bb Bb. /	11000 1101	

Г	BASE PLATE				BEARING		
П	WIDTH	LENGTH	HEIGHT	WIDTH	LENGTH	HEIGHT	DEPTH
Е	14"	11.25"	2.25*	14"	11.25*	2.5"	4.75"

COUNTY: COBB P.I. NO: 713640

PROJECT: NH000-0575-01(028)

J.B. TRIMBLE, INC.

Beams 3 & 4

JOB NO: 31-6036 DESIGNED BY: SHG

DATE: 10/30/2009

EXPANSION BEARING CALCULATIONS

BENT 2 AH (Beams 3 & 4) 3 AH (Beams 3 & 4)

GENERAL INPUT:

Beam Type	Plate Girder	*
R (Reaction) =	162.6	Kip
Bottom Flange Thick, t _{FLG} =	1.375	in
W _{SP} =	14.00	in
W _{BZP} =	12.00	in
W _{BP} =	14.00	in
L _{SP} =	10.00	in
L _{BP} =	11.25	in

ALLOWABLE BEARING ON CONCRETE:

$f_{e}^{*} = F_{b} = 0.3f_{c}^{*} = 0.3f_{c}^{*}$	3500 1.050	psi ksi	
$f_b = R/(L_{BP} * W_{BP}) =$	1.032	ksi	fb < Fb> OK

BRONZE PLATE WIDTH (WBZP):

TYPE = S	ELF LUB	RICATING ASTM B22 ALLO	Y 911		
BEARING CAPACITY =	2000	psi			
$L_{BZP} =$	6.77	in> use =	8.0	in	203 mm

BASE (MASONRY) PLATE:

Max of W _{OH} or L _{OH} =	1.63	in			
$M = wL^2/2 = f_b Max(W_{OH} or L_{OH})^2/2 =$	1.36	K-in			
F _y =	36000	psi	AASHT	O Table 10.2B	
$F_{yb} = .55F_y =$	19.8	ksi	AAS	HTO 10.32.1A	
$t_{BP} = [6M/F_{yb}]^{V_0} =$	0.64	in> use =	0.75	in	19 mm

SOLE PLATE:

$t_{SP} = [3/4(RW_{SP})/(L_{SP}F_{YS})]^{Y_S} =$	2.94	in.		
$t'_{SP} = t_{SP} - t_{FLG} =$	1.56	in> use =	1.75	in
Rad (Radius) =	18.00	in		
$T_{SP} = t'_{SP} + Rad - [Rad^2 - (½L_{BZP})^2]^{\frac{1}{2}} =$	2.20	in> use =	2.25	in

BRONZE PLATE THICKNESS (tggs):

	BASE PLATE			SOLE PLAT	E	BRONZE PLATE		BRONZE PLATE BEARIN	
WIDTH	LENGTH	HEIGHT	WIDTH	LENGTH	HEIGHT	WIDTH	LENGTH	HEIGHT	DEPTH
14"	11.25"	0.75"	14*	10"	1.75*	12"	8"	1.25"	3.75*

COUNTY: COBB P.I. NO: 713640

PROJECT: NH000-0575-01(028)

Beams 1 & 2

JOB NO: 31-6036 DESIGNED BY: SHG

DATE: 10/30/2009

FIXED BEARING CALCULATIONS

BENTS 3 BK (Beams 1 & 2) 4 (Beams 1 & 2)

GENER	AL INPUT:			
$L_{SP} = f_o =$	171.1 Kips 1.375 in 16.00 in 16.00 in 10.25 in 3500 psi			35 mm 406 mm 406 mm 260 mm
$F_b = 0.3f_c =$	1.050 ksi	AASHTO Art. 8	.15.2.1.3	
SOI	LE PLATE:	M=RL/8	S=wt²/6	f _e =M/S
F _y =	36000 psi	AASHTO Table	10.2B	
$F_{yb} = .55F_{y} =$	19.8 ksi	AASHTO 10.32	2.1A	
$t_{SP} = [3/4(RW_{SP})/(L_{SP}F_{YB})]^{1/2} =$	3.18 in.			
91 91 159	1.81			46 mm
Rad (Radius) =				
= t'_{SP} + Rad - $[Rad^2 - (1/2L_{SP})^2]^{1/2}$ =	2.55 in> use =	2.75	in	70 mm
BASE (MASONR	Y) PLATE: M=(R/W)(W/2)(W/4)=RW/	8	S _X =W _{SP} T _B	p ² /6 f _s =M/S
$L_{BP} = R/(W_{BP}Fb) =$	10.18 in> use =	10.25	in	260 mm
$t_{BP} = [3/4(RL_{BP})/(W_{BP}F_{YB})]^{1/2} =$	2.04 in> use =	2.25	in	57 mm
ALLOWABLE BEARING ON CO	ONCRETE:			

 $f_b = R/(L_{BP} * W_{BP}) = 1.043 \text{ ksi}$ fb < Fb --> OK

	BASE PLAT	E		SOLE PLATE		BEARING
WIDTH	LENGTH	HEIGHT	WIDTH	LENGTH	HEIGHT	DEPTH
16"	10.25"	2.25"	16"	10.25"	2.75*	5"

P.I. NO: 713640

PROJECT: NH000-0575-01(028)

J.B. TRIMBLE, INC.

Beams 1 & 2

JOB NO: 31-6036 DESIGNED BY: SHG

DATE: 10/30/2009

EXPANSION BEARING CALCULATIONS

BENT 2 AH (Beams 1 & 2) 3 AH (Beams 1 & 2)

GENERAL INPUT:

Beam Type	Plate Girder	▼	
R (Reaction) =	171.1	Kips	
lottom Flange Thick, t _{FLG} =	1.375	in	36
W _{SP} =	16.00	in	406
$W_{BZP} =$	12.00	in	300
W _{BP} =	16.00	in	406
L _{SP} =	10.00	in	254
L _{BP} =	10.25	in	260

ALLOWABLE BEARING ON CONCRETE:

f'c =	3500	psi	
$F_b = 0.3f_c =$	1.050	ksi	
$f_b = R/(L_{BP} * W_{BP}) =$	1.043	ksi	fb < Fb -> OK

BRONZE PLATE WIDTH (WBZF):

BASE (MASONRY) PLATE:

Max of AAOH of COH =	2.00	III		
$M = wL^2/2 = f_b Max(W_{OH} \text{ or } L_{OH})^2/2 =$	2.09	K-in		
F _y =	36000	psi	AASHTO Table 10.2B	
$F_{yb} = .55F_y =$	19.8	ksi	AASHTO 10.32.1A	
$t_{BP} = [6M/F_{yb}]^{V_2} =$	0.80	in> use =	1.00 in	25 mm

SOLE PLATE:

$$\begin{split} t_{gp} = & [3/4(RW_{SP})/(L_{SP}F_{YB})]^{N_F} = & 3.22 & \text{in.} \\ & t'_{SP} = t_{SP} - t_{RLG} = & 1.85 & \text{in} ------> use = & 2.00 & \text{in} \\ & & Rad \ (\text{Radius}) = & 18.00 & \text{in} \\ & & & & & & & & & & & & & \\ T_{SP} = t'_{SP} + & \text{Rad} \cdot \left[Rad^2 - (\frac{1}{2}L_{BZP})^2\right]^{N_F} = & 2.45 & \text{in} ------> use = & 2.50 & \text{in} \end{split}$$

BRONZE PLATE THICKNESS (tgzp):

$$\begin{array}{lll} A = & 0.75 & \text{in} \\ & & \\ t_{BZP} = (T_{SP} \cdot t'_{SP}) + A = & 1.25 & \text{in} & \cdots \\ & & & \\ \end{array}$$

BASE PLATE		SOLE PLATE			BRONZE PLATE			BEARING	
WIDTH	LENGTH	HEIGHT	WIDTH	LENGTH	HEIGHT	WIDTH	LENGTH	HEIGHT	DEPTH
16"	10.25*	1"	16"	10"	2*	12"	8*	1.25"	4.25"

CALCULATION COVER SHEET

PROJEC [*]	Т		JOB NO.			CALC NO	D. S	HEET
I-75 / I-57	5 NORTHWEST COF	RRIDOR	NH000-0073	-03(242)		BR#31	1	
SUBJEC	Γ			DISCI	PLINE	•	_	
Substruct	ure Design Input			STRU	CTURAL			
CALC	CULATION STATUS	PRELIMINARY (CONFIRMED	SLIDS	SEDED	VOIDE		//PLETE
	DESIGNATION	FILLIMINALLI	CON INVILL	3010	JLDLD	VOIDE	.D INCON	/IF LL I L
								X
				50 15		lı (=n	01011/051 5101	
	COMPUTER OGRAM/TYPE	SCP I	MAINFRAME	PC P	PROGRAM		SION/RELEASE 2003	E NO.
the comp (a) These and/or ha (b) Any us factors ar (c) If any a complet (d) GTP h	letion of all work under e calculations were not s not been fully verifier ser is cautioned that the d without proper regal such calculations or ar the confirmation of the in has no responsibility for	Transportation (GDOT) that contract and directed completed at the time of dor checked. These calculations of these calculations for their purpose, coult in the use of this information contained the or the use of this information are included for the lations are included for th	ed that the worl of GDOT's direct culations are a ons and any relat d lead to errone herein is used rein should be p ion not under it	with respection and to work-in-preceded informated informated eous concerning future working the work with the work of the wor	pect to these he information or control or control mation or control or contr	se calculation tion contained are preser alculations, s or any follo	ons be discontinued herein is not nated only as such without access to wo on design wo	ned. complete n.
								
A	As per GDOT's termina	ation for convenience directi	ion 9	9	JCR			11/30/09
NO.		FOR REVISION	TOTAL NO. OF SHEETS	LAST SHEET NO.	BY	CHECKED	APPROVED/ ACCEPTED	DATE
i		REC	ORD OF REVI	SIUNIS				

PROJECT: <u>I-75 / I-575 NORTHWEST CORRIDOR</u>
JOB NUMBER <u>NH000-0073-03(242)</u>
CALC NO. <u>BR#31</u>

SUBJECT:Bent Design Input - Bent 2SHEET NO.BY:JCRDATE:11/30/2009SHEET REV.

P.I. NO: 713640

PROJECT: NH000-0575-01(028)

J.B. TRIMBLE, INC.

JOB NO: 31-6036 DESIGNED BY: SHG DATE: 10/24/2009

PSC,012409

PIER DESIGN CALCULATIONS

BENT 2

GENE	RAL REQUIREMENT	S:							
	Live Load case	S:	See GDOT Pro	gram BRLLC	A				
	Skew Angle:		63.50	° FROM CL			Is Bent Fix "F" or Exp. "E"?	E	F = Fix
			26.5	° FROM CL	BENT				E = Exp
	Concrete Streng	gth:	3500	psi					
	Rebar Strength		60000	psi					
		Ec =	3587	ksi	AASHTO 8.7.1				
		Es =	29000	ksi	AASHTO 8.7.2				
	Allowable Steel	Stress:	24000	psi	AASHTO 8.15.2.2				
		n = Ec/Es =	8		AASHTO 8.15.3.4				
	Cap Bar size:		11						
	Stirup Size:		5						
	Maximum bars	row in cap:	12	bars					
	Column Steel R	atios:	1	% min.					
			8	% max.					
	Edge of Column	to main rebar:	3.135	in.					
	Impact Factor		Length (ft)	Impact	7				
		LEFT SPAN	80.75	1.243					
		RIGHT SPAN	95.00	1.227					
			Avg. Impact =	1.24					
	Soil Weight	0.120	kcf						
	Columns:								
		TYPE	S	(S-SQUARE	or RECTANGULAR, (C-CIRCULAR, P	-PILES)		
	Pile Spacing:	0.00	ft. MIN	0	ft. MAX				
		0.00	ft. EMBED	0	ft. EDGE				
	Pile Capacity:								
		TYPE		14 X 73	STEEL HP				
		ALLOWABLE LOA	D	192	KIPS =	96	TONS		
		UPLIFT		0	KIPS =				

COUNTY: COBB P.I. NO: 713640

PROJECT: NH000-0575-01(028)

J.B. TRIMBLE, INC.

JOB NO: 31-6036 DESIGNED BY: SHG DATE: 10/24/2009

PIER DESIGN CALCULATIONS

BENT 2

WIND ON LIVE LOAD

AASHTO 3.15.2.1.2

Length = 87.88 ft. APT = APL = 12.79 ft. Use-> 13.00 ft.

TRACTION FORCE: For One lane AASHTO 3.9

LF = 0.00 k

TEMPERATURE FORCE: AASHTO 3.16

Friction Force due to Temperature:

 $\Delta =$ Temp. Deflection = ALPHA x Length x Change in Temp.

T_{RESE} = 30 ° T_{FALL} = 40 ° (Fahrenheit)
Material (C or S): C ALPHA = 0.000006 /° (Fahrenheit)

Force in Pad = Fs = [G x L x W x Deflection] / (Telas)

RIGHT Expansion Length = 80.75 95.00 0.233 0.274 Δ= in G = Shear Modulus of Pad = 200 200 psi L= Length of Pad = 10.50 10.50 in W = Width of Pad = 12.00 12.00 Telas = Bearing Elastomer Depth = 4.250 4.250 in

Fs = 1.38 1.62 KIPS /pad

No. of Beams = 6 6

Total Temperature Force = 8.27 9.73 kips @ top of seat 9.14 10.76 kips @ center of cap

P_L= 8.18 9.63 kips P_T= 4.08 4.80 kips

Difference = P_L = 1.44 kips AT CL CAP P_T = 0.72 kips AT CL CAP

P_L= 1.58 kips AT CL CAP ---->
P_T= 0.79 kips AT CL CAP

AT CL CAP

Use Total Lateral Force

due to eccentricity

= PL + Equiv. Lateral Force from MDL

Expansion of Concrete Cap = 0.00018 in/in
Contraction of Concrete Cap = 0.00044 in/in which includes 0.0002 for creep

STREAM FORCE: AASHTO 3.18.1

100 yr Flood ELEV. = 942.5 ft.
Point of Fixity = 19.00 ft.
Bottom of Stream ELEV = 935.00 ft.
Pt. of Fixity ELEV = 933.00

V_{AVG} = 4.46 FPS @ 100 yr. Flood K = 1.4 for square ended piers

 $P_{AVG} = K * (V_{AVG})^2 = 27.85$ psf AASHTO Eq. (3-4) $P_{MXX} = 2 * P_{AVG} = 55.70$ psf

P_{MAX} = 2 * P_{AVG} = 55.70 psf Piers Aligned with stream flow:

P_S = 0.731 kips M = 5.12 k-ft. P_{CL CAP} = 0.269 k

COUNTY: COBB P.I. NO: 713640

PROJECT: NH000-0575-01(028)

JOB NO: 31-6036 DESIGNED BY: SHG DATE: 10/24/2009

ED DEGIGN									
ER DESIGN	CALCULATIONS					BENT	2		
-	DEAD LOAD:							AASHTO 3.3	
	LENGTH =	42.00	feet	STEP HT :	0.000	t			
	SKEW =			STEP WT :		ft			
		63.50	degrees						
	SPAN	2							
		BEAM	DISTANCE	DISTANCE					
	BEAM 1	SPACING	-0.650	ALONG	R dl	Add1 DL	DL	_	
	2	7.750	8.660	-0.650 8.010	71.1 71.1	0.00	71.1 71.1		
	3	7.750	8.660	16.670	71.1	0.00	71.1		
	4	7.750	8.660	25.330	71.1	0.00	71.1		
	5	7.750 7.750	8.660	33.990	71.1	0.00	71.1		
	0	7.750	8.660 -0.650	42.650 42.000	71.1	0.0	71.1		
	TOTAL		42.000	42.000			426.5		
	SPAN	3			CLE	Brg to CL Bent =	0.583		
	SPAN	3							
	DEAN	BEAM	DISTANCE	DISTANCE			-		
	BEAM 1	SPACING	-0.650	-0.650	R dl 104.0	Add1 DL	DL 104.0	-	
	2	7.750	8.660	8.010	104.0	0.00	104.0		
	3	7.750	8.660	16.670	95.6	0.0	95.6		
	4	7.750	8.660	25.330	95.6	0.0	95.6		
	5	7.750	8.660	33.990	83.8	0.0	83.8		
	6	7.750	8.660	42.650	83.8	0.00	83.8		
	TOTAL		-0.650 42.000	42.000			566.8		
	Tome		42.000		CL B	rg to CL Bent =	0.583		
	COMBINED LOADS						993.3		
	COLUMN =	1.750	FT - checking	4 points on colum	nn				
				DISTANCE				CHECK	
	POINT	MEMBER		ALONG	Rdl	Add1 DL	DL	POINT	
8	3.25			1	Jan S.	100			
	G1 EC	1	8.900	-0.650	175.1	0.0	175.1	1	
25	5.50	,	8.025	7.375				2	
	EC	2	0.875	9.125				3	
	G2	2	-1.115	8.010	175.1	0.0	175.1	4	
	CHECK	2	4.330	12.340				5	
	G3 CHECK	2	4.330	16.670	166.6	0.0	166.6	6	
	CHECK G4	2	4.330 4.330	21.000 25.330	166.6	0.0	166.6	7	
	CHECK	2	4.330	29.660	100.0	0.0	100.0	9	
	G5	2	8.660	33.990	154.9	0.0	154.9	9	
	EC	2	-1.115	32.875				10	
8	.25		0.075	24.005					
	EC G6	3	0.875 8.025	34.625 42.650	154.9	0.0	154.9	11	
	GO	3	0.025	-0.650	154.9	0.0	154.9	12	
			42.000						
	ADDITIONAL DL MO	MENT DUE TO E	CCENTRICITY:						
	ADDITIONAL DL MO	MENT DUE TO E	81.84	KIP-FT					
(EQUIV. LO		M _{DL} =	81.84	KIP-FT KIP					
	ADDITIONAL DL MO	M _{DL} =							
	NG FORCE) F _{EL} = M _{OL} / H _e	M _{DL} =	81.84 4.31	KIP				AASHTO 3.4	
	NG FORCE) F _{EL} = M _{OL} / H _I	M _{DL} =	81.84 4.31	KIP				AASHTO 3.4	
	NG FORCE) F _{EL} = M _{OL} / H _I	M _{DL} = DESIGN OF COLUMN = = F _{EL} + P _{L TEMP} =	81.84 4.31 5.88	KIP				AASHTO 3.4	
	NG FORCE) F _{EL} = M _{OL} / H _I TOTAL LONG FORCE) F _L LIVE LOADS:	M _{DL} = DESIGN OF COLUMN = = F _{EL} + P _{L TEMP} = LEFT 80.75	81.84 4.31 5.88 RIGHT 95.00	KIP KIP	XLE LOAD NO	DIMPACT		AASHTO 3.4	
	NG FORCE) F _{EL} = M _{DL} / H _C TOTAL LONG FORCE) F _L LIVE LOADS: Span Lengths =	M _{DL} = DESIGN OF COLUMN = = F _{EL} + P _{L TEMP} = LEFT 80.75	81.84 4.31 5.88 RIGHT 95.00	KIP KIP ft. KIPS	IXLE LOAD NO ANE LOAD NO				
	NG FORCE) F _{EL} = M _{DL} / H _C TOTAL LONG FORCE) F _L LIVE LOADS: Span Lengths =	M _{OL} = DESIGN OF COLLINE = = F _{EL} + P _{L TEMP} = LEFT 80.75 TTION	81.84 4.31 5.88 RIGHT 95.00 65.90	KIP KIP ft. KIPS					
	NG FORCE) F _{EL} = M _{DL} / H _C TOTAL LONG FORCE) F _L LIVE LOADS: Span Lengths = LIVE LOAD REAC	M _{OL} = DESIGNOF COLLINE = = F _{EL} + P _{L TEMP} = LEFT 80.75 TION	81.84 4.31 5.88 RIGHT 95.00 65.90 82.24 1.24	KIP KIP ft. KIPS					
(NG FORCE) F _{BL} = M _{DL} / H _I TOTAL LONG FORCE) F _L LIVE LOADS: Span Lengths = LIVE LOAD REAC AVERAGE IMPAC	M _{OL} = DESIGNOF COLLINE = = F _{EL} + P _{L TEMP} = LEFT 80.75 TION	81.84 4.31 5.88 RIGHT 95.00 65.90 82.24 1.24	KIP ÎL KIPS A				VERIFY !!!!	
(NG FORCE) F _{EL} = M _{OL} / H _O TOTAL LONG FORCE) F _L LIVE LOADS: Span Lengths = LIVE LOAD REAC AVERAGE IMPAC P-LOAD FOR BRL	M _{OL} = DESIGNOF COLLINE = = F _{EL} + P _{L TEMP} = LEFT 80.75 TION	81.84 4.31 5.88 RIGHT 95.00 65.90 82.24 1.24 51	KIP tt. KIPS KIPS KIPS	ANE LOAD NO	IMPACT			
(NG FORCE) F _{EL} = M _{OL} / H _O TOTAL LONG FORCE) F _L LIVE LOADS: Span Lengths = LIVE LOAD REAC AVERAGE IMPAC P-LOAD FOR BRL	M _{OL} = DESIGNOF COLUMN = = F _{EL} + P _{L TEMP} = LEFT 80.75 TION TT LCA INPUT REACTION =	81.84 4.31 5.88 RIGHT 95.00 65.90 82.24 1.24 51	KIP AL KIPS KIPS KIPS KIPS KIPS KIPS KIPS KIPS		IMPACT		VERIFY !!!!	
(NG FORCE) F _{EL} = M _{OL} / H _O TOTAL LONG FORCE) F _L LIVE LOADS: Span Lengths = LIVE LOAD REAC AVERAGE IMPAC P-LOAD FOR BRL NTRIEUGAL FORCES LIVE LOAD I	M _{OL} = DESIGNOF COLUMN = = F _{EL} + P _{L TEMP} = LEFT 80.75 THON ST LCA INPUT	81.84 4.31 5.88 RIGHT 95.00 65.90 82.24 1.24 51 65.90 70	KIP tt. KIPS KIPS KIPS	ANE LOAD NO	IMPACT		VERIFY !!!!	
(NG FORCE) F _{EL} = M _{OL} / H _I TOTAL LONG FORCE) F _L LIVE LOADS: Span Lengths = LIVE LOAD REAC AVERAGE IMPAC P-LOAD FOR BRL NTRIFUGAL FORCES LIVE LOAD I	M_{OL} = DESIGNOF COLLINY = = $F_{EL} + P_{LTEMP}$ = LEFT 80.75 CTION ST LCA INPUT REACTION = Speed (S) = ve Radius (R) = 16.68 S ² / R	81.84 4.31 5.88 RIGHT 95.00 65.90 82.24 1.24 51 65.90 70 3880	KIP IL KIPS KIPS L KIPS A KIPS A	ANE LOAD NO	IMPACT		VERIFY !!!!	

PROJECT: <u>I-75 / I-575 NORTHWEST CORRIDOR</u>
JOB NUMBER <u>NH000-0073-03(242)</u>
CALC NO. <u>BR#31</u>

SUBJECT: Bent Design Input - Bent 3 SHEET NO.
BY: JCR DATE: 11/30/2009 SHEET REV.

P.I. NO: 713640

PROJECT: NH000-0575-01(028)

J.B. TRIMBLE, INC.

Is Bent Fix "F" or Exp. "E"?

BENT 3

JOB NO: 31-6036 DESIGNED BY: SHG DATE: 10/24/2009

> F = Fix E = Exp

10/26/09

PIER DESIGN CALCULATIONS

GENERAL REQUIREMENTS:			
Live Load cases:	See GDOT Pr	rogram BRL	LCA
Skew Angle:	63.50	° FROM	CL BRIDGE
	26.5	° FROM	CL BENT
Concrete Strength:	3500	psi	
Rebar Strength:	60000	psi	
Ec=	3587	ksi	AASHTO 8.7.1
Es=	29000	ksi	AASHTO 8.7.2
Allowable Steel Stress:	24000	psi	AASHTO 8.15.2.2
n = Ec/Es =	8		AASHTO 8.15.3.4
Cap Bar size:	11	#	
Stirup Size:	5		
Maximum bars / row in cap:	12	bars	

Impact Factor		Length (ft)	Impact
	LEFT SPAN	95.00	1.227
	RIGHT SPAN	95.00	1.227
		Avg. Impact =	1.23

Soil Weight 0.120 kcf

Columns:

Column Steel Ratios:

Edge of Column to main rebar:

TYPE S (S-SQUARE or RECTANGULAR, C-CIRCULAR, P-PILES)

% min.

% max.

in.

8

3.135

Pile Specing: 0.00 ft. MIN 0 ft. MAX 0.00 ft. EMBED 0 ft. EDGE

Pile Capacity:

TYPE 14 X 73 STEEL HP
ALLOWABLE LOAD 192 KIPS =

UPLIFT 0 KIPS =

96 TONS

WIND ON SUPERSTRUCTURE			AASHTO 3.15.2.1.1	Wind Loads Parallel To Bent
Parapet Height = Beam Height =	Left Span 32 in. 48 in.	Rigtht Spar 32 in. 48 in.		13.00 ft.
'D' or 'H' Dimension =	9.5 in.	9.5 in. 4,79 ft.	_	
Beam + Coping + Slab =	4.79 ft. 7.46 ft.	7.46 ft.		5.73 ft.
Total Height = Span Lengths =	95.00 ft.	95.00 ft.	TOTAL	EL 952.00 T
Wind Force Area =	354.3 ft/2	354.3 ft/2	709 ft^2	T
WIND FOICE Area =	334.0 1812	334.0 IF E	109 11.5	→
Height of Cap =	4.00 ft.	4.00 ft.		21.00 ft.
Wind Force Arm =	5.73 ft.			
WIND ON SUBSTRUCTURE:			AASHTO 3.15.2.2	_ Groundline
WILD ON SOUSTHOOTONE.			PHOTTIO STORES	7
Wind Force =	0.040	ksf	PARA. & PERP.	<u> </u>
Length of Cap =	49.00	ft.		
Width of Cap =	3.50	ft.		
CG of Cap ELEV =	952.00			
Ground Line ELEV=	933.00			
100 YR Scour ELEV =	0.00			
Depth to Point of Fixity =	2.00			Wind Loads Perpendicular To Bent
Pt. of Fixity ELEV =	931.00			95.00 ft
Bot. Cap to Pt. of Fixity =	19.00	ft.		
Design Height of Column =	21.00	ft.	CG Cap to Pt. of Fixity	1
Exposed Height of Column =	17.00	ft.		13.00 ft.
Width of Column =	3.50	ft.		5.73 ft 🕒
Depth of Column =	3.50	ft.		EL 952.00 CG Cap
No. of Columns =	2	columns		[CG Cap]
	PARA.	PERP.		
M _{CAP} =	11.76	164.64	k-ft.	21.00 ft.
M _{COX} =	24.99	49.98	k-ft.	
M _{TOTAL} =	36.75	214.62	k-ft.	Groundline
INSTALL -	PT = 1.75	PL = 10.22	kips	
	1 = 1.73	1 - 10.22	nipo .	1

COUNTY: COBB P.I. NO: 713640

PROJECT: NH000-0575-01(028)

J.B. TRIMBLE, INC.

JOB NO: 31-6036 DESIGNED BY: SHG DATE: 10/24/2009

PIER DESIGN CALCULATIONS

BENT 3

WIND ON LIVE LOAD

Length = APT = APL = 95.00 ft. ft. Use--> 12.79 13.00 ft.

TRACTION FORCE: For One lane

AASHTO 3.9

AASHTO 3.15.2.1.2

TEMPERATURE FORCE:

AASHTO 3.16

Friction Force due to Temperature:

 $\Delta =$ Temp. Deflection = ALPHA x Length x Change in Temp.

T_{RESE} = 30 ° T_{FALL} = 40 ° (Fahrenheit)

Material (C or S): C ALPHA = 0.000006 /° (Fahrenheit)

Force in Pad = Fs = [G x L x W x Deflection] / (Telas)

		LEFT		RIGHT		
Expansio	on Length =	0.00		95.00	ft	
	Δ=	0.000		0.274	in	
G = Shear Modulu		200		200	psi	
	th of Pad =	10.50		10.50	in	
	th of Pad =	12.00		12.00	in	
Telas = Bearing Elastom	er Depth =	4.250		4.250	in	
	Fs=	0.00		1.62	KIPS /pad	
No. o	of Beams =	6		6		
Total Temperatu	ure Force =	0.00		9.73	kips @ top of seat	
		0.00		10.66	kips @ center of cap	
	PL =	0.00		9.54	kips	
	P _T =	0.00		4.76	kips	
Difference =	PL=	9.54	kips		AT CL CAP	
	P _T =	4.76	kips		AT CL CAP	
	PL=	10.34	kips		AT CL CAP>	Use Total Lateral Force
	P _T =	5.15	kips		AT CL CAP	 PL + Equiv. Lateral Force from MDL due to eccentricity
Expansion of Cond	rete Cap =	0.00018		in/in		
Contraction of Conc	rete Cap =	0.00044		in/in	which includes 0.0002 for creep	

STREAM FORCE:

AASHTO 3.18.1

100 yr Flood ELEV. =	942.5	t	
Point of Fixity =	21.00	tt.	
Bottom of Stream ELEV =	933.00	ft.	
Pt. of Fixity ELEV =	931.00		
V _{AVG} =	4.46	FPS @ 100 yr. Flood	
K =	1.4	for square ended piers	
$P_{AVG} = K * (V_{AVG})^2 =$	27.85	psf	AASHTO Eq. (3-4)
$P_{MAX} = 2 * P_{AVG} =$	55.70	psf	
Piers Aligned w	ith streaam fi	ow:	
Ps =	0.926	kips	
M =	7.72	k-ft.	
PCL CAP =	0.367	k	

COUNTY: COBB P.I. NO: 713640

PROJECT: NH000-0575-01(028)

JOB NO: 31-6036 DESIGNED BY: SHG DATE: 10/24/2009

PIER DESIGN CALCULATIONS

ER DESIGN CALCULATION	NS				BENT :	3	
DEADLO	DAD:						AASHTO 3.3
LENG	TH = 49.00	feet	STEP HT	= 0.000	ft		
		iout	STEP WT		ft		
SKE	W = 63.50	degrees					
SPAN	3						
	BEAM	DISTANCE	DISTANCE	F			
BEAM	SPACING	BETWEEN	ALONG	Rdl	Add1 DL	DL	_
1 2	9 167	1.685	1.685	104.0	0.00	104.0	
3	8.167 8.167	9.126 9.126	10.811 19.937	104.0 95.6	0.00	104.0 95.6	
4	8.167	9.126	29.063	95.6	0.00	95.6	
5	8.167 8.167	9.126 9.126	38.189 47.315	83.8 83.8	0.00	83.8 83.8	
	0.101	1.685	49.000	00.0	0.0		
TOTAL		49.000		CL	Ben to Cl. Boot -	566.8	
SPAN	4			CLE	Brg to CL Bent =	0.583	
		DISTILION					
BEAM	BEAM SPACING	DISTANCE BETWEEN	DISTANCE	Rdl	Add1 DL	DL	
1		1.685	1.685	104.0	0.00	104.0	_
2 3	8.167	9.126	10.811	104.0	0.0	104.0	
4	8.167 8.167	9.126 9.126	19.937 29.063	95.6 95.6	0.0	95.6 95.6	
5	8.167	9.126	38.189	83.8	0.0	83.8	
6	8.167	9.126 1.685	47.315 49.000	83.8	0.00	83.8	
TOTAL		49.000	10.000			566.8	
COMBINED L	DADS			CL E	Brg to CL Bent =	0.583	
COLUM	N = 1.750	FT - checking	¼ points on colu	imn			
			DISTANCE				CHECK
9.75	MEMBER		ALONG	Rdl	Add1 DL	DL	POINT
	G1 1	8.065	1.685	208.0	0.0	208.0	1
29.50	EC 1	7.190	8.875				2
	EC 2	0.875	10.625				3
	G2 2	0.186	10.811	208.0	0.0	208.0	4
CHE	CK 2 G3 2	4.563 4.563	15.374 19.937	191.1	0.0	191.1	5
CHE	CK 2	4.563	24.500				7
CHE	G4 2 CK 2	4.563 4.563	29.063 33.626	191.1	0.0	191.1	8
	G5 2	9.126	38.189	167.7	0.0	167.7	9
	EC 2	0.186	38.375				10
9.75	EC 3	0.875	40.125				11
	G6 3	7.190	47.315	167.7	0.0	167.7	12
		49.000	1.685				
ADDITIONAL	DL MOMENT DUE TO E						
(FOUR LOUIS	M _{DL} =	0.00	KIP-FT				
(EQUIV. LONG FORCE) FEL = 1		0.00	KIP				
	CE) FL = FEL + PL TEMP =	10.34	KIP				
LIVE LOAD		ALESSO:					AASHTO 3.4
Span Length	LEFT s = 95.00	RIGHT 95.00	ft.				
LIVE LOAD		66.11		AXLE LOAD N	OIMPACT		VERIFY IIII
LIVE LOND	nead nois	86.80		LANE LOAD N			ACMIL E IIII
AVERAGE I	MPACT	1.23					
P-LOAD FO	R BRLLCA INPUT	53	KIPS				
CENTRIFUGAL FORCE	E:						AASHTO 3.10
LIVE L	OAD REACTION =	66.11	KIPS	AXLE LOAD NO	OIMPACT		
	Speed (S) =	70	mph				
	Curve Radius (R) = C = 6.68 S ² / R =	3880 8.44	ft. %				
Cent. Force ©	6ft above Rdwy =	5.58	kips				
			75				

CALCULATION COVER SHEET

PROJEC [*]	Т		JOB NO.			CALC NO.		SHEET		
I-75 / I-57	5 NORTHWEST CO	NH000-0073-	NH000-0073-03(242)			BR#31 1				
SUBJEC										
Live Load	Load Case Output STRUCTURAL									
CALCULATION STATUS PRELIMINARY CONFIRMED SUPSEDED VOIDED INCOMPLETE										
	CULATION STATUS PRELIMINARY CONFIRMED SUPSEDED VOIDED INCC DESIGNATION									
								X		
	COMPLITED	SCP N	MAINFRAME	DC ID	DOCDAM	I IVED	SION/RELEAS	E NO		
	COMPUTER OGRAM/TYPE	SCP IN	MAINFRANE		ROGRAM	I VER	SION/RELEAS	E NO.		
		X YES NO	\bigcirc	(x)	GDO ⁻ BRLLC		06/26/2008	3		
				•		•				
Note 1: Georgia Department of Transportation (GDOT) terminated Contract Number TOURDPPI60072 for its convenience the completion of all work under that contract and directed that the work with respect to these calculations be discontinued. (a) These calculations were not completed at the time of GDOT's direction and the information contained herein is not and/or has not been fully verified or checked. These calculations are a work-in-progress and are presented only as such. (b) Any user is cautioned that the use of these calculations and any related information or calculations, without access to factors and without proper regard for their purpose, could lead to erroneous conclusions. (c) If any such calculations or any information contained herein is used in future work efforts or any follow on design work a complete confirmation of the information contained herein should be performed prior to any such use. (d) GTP has no responsibility for the use of this information not under its direct control. Live Load Case ouptput is included for bents 2 and 3.										
A	<u> </u>	ation for convenience directi		5 LAST	JCR	CHECKED	A DDDOVED!	11/30/09		
NO.	REASON	FOR REVISION	NO. OF SHEETS	LAST SHEET NO.	BY	CHECKED	APPROVED/ ACCEPTED	DATE		
RECORD OF REVISIONS										

PROJECT: <u>I-75 / I-575 NORTHWEST CORRIDOR</u>
JOB NUMBER <u>NH000-0073-03(242)</u>
CALC NO. <u>BR#31</u>

SUBJECT: <u>Live Load Case Output - Bent 2</u> SHEET NO. BY: <u>JCR</u> DATE: <u>11/30/2009</u> SHEET REV.

Sufficient sample calculations representative of the scope and conditions in the design calculation were performed and the results compared to demonstrate the computer program adequacy.

GEORGIA DEPARTMENT OF TRANSPORTATION
PRECONSTUCTION DIVISION - OFFICE OF BRIDGE & STRUCTURAL DESIGN
SUMMARY OF THE LIVE LOAD CASE PROGRAM
REVISED: JUNE 26, 2008

17-0CT-09

I-75 OVER NOONDAY CREEK - BT 2

	D20	10	00	00	00	00	00	00	00	00	00	00	00	00	00
	D19	BEAM	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	D18	BEAM 9	0.000.0	0.000	0.000.0	0.00.0	0.00.0	0.00.0	0.000	0.0000	0.00.0	0.000	0.000	0.000	0.000
SKEW ANGLE 0	D17	8 BE													
COLUMN WIDTH 0.000	D16	BEAM	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0 × 0	D15	Σ.	0.00.0	0.000	0.000.0	000	000	000	0.000.0	000.0	0.000.0	0.000	0.000	000	000
# OF COLUMNS	D14	BEAM	0	0		51.000	51.000	51,000	0.	0	0	0	0	51.000	\$1.000
	D13	BEAM 6	0.000	0.00.0	0.00.0	42.774	59.226	59.226	0.000	0.00.0	34.548	0.00.0	0.000	42.774	42.774
MAXIMUM # OF TRUCKS 3	D12	2		0											
MA	D11	BEAM	0.000	0.000	18.097	8.226	70.742	72.387	19.742	19.742	82.258	31.258	31.258	8.226	8.226
REACTION FORCE 51.000	D10	M 4	0.000	3.290	65.806	0.000	23.032	85.548	62.516	67.452	72.387	78.968	78.968	0.000	3.290
DZ.	D9	BEAM	0	3	65	0	23	85.	62	67.	72.	78.	78.	0	3
# OF BEAMS	D8	BEAM 3	0.000	62.516	83.903	0.000	0.000	37.839	19.742	82.258	82.258	70.742	72.387	0.0000	62.516
E	D7	B		9	80			'n	H	80	80	7	7		9
CENTER LINE DISTANCE 23.500	D6 0 7.750	BEAM 2	39.484	75.677	75.677	0.000	0.000	0.000	0.000	34.548	34.548	23.032	85.548	39.484	75.677
X2 D	D4 D5	BEAM 1	62.516	62.516	62.516	0.000	0.000	0.000	0.000	0.000	0.000	0.000	37.839	62.516	62.516
0			9	9	9	0	Ü	Ü	0	Ü		0	3,7	9	9
X1 3.500	D1 D2 D3 3.500 7.750 7.750	NO. OF TRUCKS	Н	2	3	Н	2	3	Н	2	m	7	3	7	т
(-)	D2 .750		1	7	m	4	Ŋ	9	7	00	0	10	11	12	13
BRIDGE WIDTH 47.000	500 7		CASE	CASE	CASE	CASE	CASE	CASE	CASE	CASE	CASE	CASE	CASE	CASE	CASE
MI 47	3.5		IL	LL	LL	LL	LL	LL	LL	LL	LL	LL	LL	LL	IL

PROJECT: <u>I-75 / I-575 NORTHWEST CORRIDOR</u>
JOB NUMBER <u>NH000-0073-03(242)</u>
CALC NO. <u>BR#31</u>

SUBJECT: <u>Live Load Case Output - Bent 3</u> SHEET NO. BY: <u>JCR</u> DATE: <u>11/30/2009</u> SHEET REV.

Sufficient sample calculations representative of the scope and conditions in the design calculation were performed and the results compared to demonstrate the computer program adequacy.

GEORGIA DEPARTMENT OF TRANSPORTATION
PRECONSTUCTION DIVISION - OFFICE OF BRIDGE & STRUCTURAL DESIGN
SUMMARY OF THE LIVE LOAD CASE PROGRAM
REVISED: JUNE 26, 2008

17-0CT-09 12:23:53

I-75 OVER NOONDAY CREEK - BT 3

	D20	10	00	00	00	00	00	00	00	00	00	0.0	00	0.0	00	
	D19	BEAM 10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	D18	BEAM 9	0.000	0.00.0	0.000	0.000.0	0.000.0	0.00.0	0.00.0	0.00.0	0.000	0.000	0.000	0.000	0.00.0	
SKEW ANGLE 0	D17															
WIDTH 0.000	D16	BEAM 8	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
00 0	D15	-	0.000	0.000.0	0.000.0	000	000	000	0.000.0	0.000	0.000.0	0.000	0,000	000	000	
# OF COLUMNS 0	D14	BEAM	0.	0.	0	53.000	53.0	53.000	0.0	0.0	0.0	0.	0.0	53.000	53.000	
	D13	BEAM 6	0.00.0	0.00.0	0.00.0	44.336	62.715	62.715	0.00.0	0.00.0	31.364	0.0000	0.0000	44.336	44.336	
MAXIMUM # OF TRUCKS 3	D12	5 B														
MA	D11	BEAM	0.000	0.000	9.728	8.664	75.726	82.209	19.469	19.469	86.531	29.196	29.196	8.664	8.664	
REACTION FORCE 53.000	D9 D10	BEAM 4	0.000	0.000	67.063	0.000	20.559	87.622	67.063	74.636	82.209	84.364	84.364	0.000	0.000	
# OF BEAMS	D7 D8	BEAM 3	0.000	62.728	91.937	0.000	0.000	32.454	19.469	86.531	86.531	76.804	82.209	0.000	62.728	
CENTER LINE DISTANCE 24.500	D6 8.167	BEAM 2	38.937	82.209	82.209	0.000	0.000	0.000	0.000	31.364	31.364	21.636	88.699	38.937	82.209	
0.000	D4 D5 8.167 8.167	BEAM 1	67.063	67.063	67.063	0.000	0.000	0.000	0.000	0.000	0.000	0.000	33.531	67.063	67.063	
X1 3.500	D3 8.167	NO. OF TRUCKS	1	63	м	ч	7	Э	٦	2	М	2	т	73	е	
М	D2 8.167		Н	~	$_{\omega}$	4	22	9	7	00	0	10	11	12	13	
BRIDGE WIDTH 49.000	00		CASE	CASE	CASE	CASE	CASE	CASE	CASE	CASE	CASE	CASE	CASE	CASE	CASE	
MI 49	3.5		LL	LL	LL	LL	LL	LL	LL	LL	TT	LL	IL	IL	ILL	

CALCULATION COVER SHEET

PROJECT		JOB NO.			CALC NO	D. S	HEET
I-75 / I-575 NORTHWEST CO	RRIDOR	NH000-0073-	03(242)		BR#31	1	
SUBJECT			DISC	IPLINE			
Intermediate Bent Design Out	out		STRU	JCTURAL			
			•				
CALCULATION STATUS	PRELIMINARY CC	NFIRMED	SUP	SEDED	VOIDE	D INCON	/IPLETE
DESIGNATION			_			· 	
							X
•	-	<u>. </u>		-			-
COMPUTER	SCP MA	AINFRAME	PC I	PROGRAM	VER	SION/RELEASE	E NO.
PROGRAM/TYPE		\bigcap	(\mathbf{x})	GDO1	-		
		\bigcirc	\smile $ $	BRPIE		06/26/2008	3
	$(\mathbf{x})_{YES}$ $()_{NO}$						
	-		<u> </u>				
Note 1: Georgia Department	of Transportation (GDOT) to	erminated Co	ntract Nu	umber TOU	RDPPI6007	2 for its conven	ience
the completion of all work und	er that contract and directed	that the wor	k with re	espect to the	ese calculat	ions be discontir	nued.
(a) These calculations were n							
and/or has not been fully verifi						-	
(b) Any user is cautioned that		•			calculations	, without access	s to
factors and without proper reg					to or one fol	low on docion w	رم داد
(c) If any such calculations or a complete confirmation of the					-	_	OIK
(d) GTP has no responsibility			-	-	arry Sucri us	5.	
(a) on had no responsibility		arriot arraor i	io un ooi	00111101.			
Intermediate bent design oupt	put is included for bents 2 a	nd 3.					
		1					1
	nation for convenience direction		13	JCR	OLIEGIZES	ADDDOVED!	11/30/09
NO. REASON	I FOR REVISION	TOTAL NO. OF	LAST SHEET		CHECKED	APPROVED/ ACCEPTED	DATE
		SHEETS	NO.	'		ACCEPTED	
	RECO	RD OF REVIS					<u> </u>

PROJECT: <u>I-75 / I-575 NORTHWEST CORRIDOR</u>
JOB NUMBER <u>NH000-0073-03(242)</u>
CALC NO. <u>BR#31</u>

SUBJECT: Bent Design Output - Bent 2 SHEET NO.
BY: JCR DATE: 11/30/2009 SHEET REV.

Sufficient sample calculations representative of the scope and conditions in the design calculation were performed and the results compared to demonstrate the computer program adequacy.

24-OCT-09 15:35:16

GEORGIA DEPARTMENT OF TRANSPORTATION
PRECONSTUCTION DIVISION - OFFICE OF BRIDGE & STRUCTURAL DESIGN GEORGIA DEPARTMENT OF TRANSPORTATION THE ANALYSIS AND DESIGN OF PIERS FOR BRIDGES - V 4.2.07 - AASHTO SPECS 1984 INTERIM REVISED: JUNE 30, 2008 I-75 OVER NOONDAY CREEK - BENT 2

PROB. NO. 10/24/09

DESIGN DATA

DESIGN DATA

DESIGN DATA

DESIGN NO. NO. NO. SKEW ANG F'C FC N FY FS EC ES CONC. Z * * * CAP REINFORCING STEEL * * * CAP

OPTIONS CAN COL LLC D M S PSI PSI PSI PSI KSI KSI STRAIN FACT MAIN STR MAX MAX MIN MIN TOP MIN DEPTH BOT

SIZE SIZ TOP BOT SIZE NO. CL. S.SP INCR. CL.

D D D L 2 2 13 0-00-00 3500. 1400. 8. 60000. 24000, 3587. 29000. 0.0030 170. 11 5 10 11 6 4 2.00 4.00 3.00 2.00

COLUMN REINFORCING STEEL R KL OC OF CM BD1 BD2 IMPACT SOIL WT ALL.S.P. MIN MAX EDGE PILE REBAR ALL.PILE ALL.PILE I MIN.P MAX.P CL.SP. CLEAR MODE COEF & KCF KSP PL SP DL SP DLST DEPTH CLEAR CAPACITY UPLIFT P 1.00 8.00 2.25 2.625 2 2.00 0.00 0.90 0.00 1.00 0.00 24.00 0.120 0.000 3.00 5.00 1.500 1.000 1.000 192.000 0.000 P

CAP DATA

DE BC BE DH LH XB1 XB2 XB3 XB4 XB5 XB6 XB7 XB8 11 C 8.250 0.000 4.000 DH LH XB1 XB2 XB3 XB4 XB5 XB6 XB7 XB8 0.000 0.000 6.625 5.750 0.000 0.000 0.875 0.250 3.875 3.875 3.875 7.750 0.250 0.000 0.000 0.875 5.750 3.500 0.000 0.000 12 C 25.500 0.000 4.000 3.500 13 C 8.250 0.000 4.000 3.500 0.000 0.000

COLUMN DATA

CN P I T S HT A DT BT DB BB DL FLEX ND NB SZ ND NB SZ ND NB SZ ND NB SZ SLOPE EP AP 21 0 C T 19.000 0.000 3.500 3.500 0.000 0.000 2.000 0.000 2 4 11 0 0 0 99 99 11 0 0 0 0.000 0.000 0.000 22 0 C T 19.000 0.000 3.500 3.500 0.000 0.000 2.000 0.000 2 4 11 0 0 0 99 99 11 0 0 0 0.000 0.000 0.000

FOOTING DATA

DEL.T R.B/D R.D/B S.HT. NP SYM. BP DP SET. 0.500 0.000 0.000 0.000 4 1 0.000 0.000 0.000 0.500 0.000 0.000 4 1 0.000 0.000 0.000 DEL.B DEL.D В D T 31 P 6.000 6.000 3.500 0.500 0.500 32 P 6.000 6.000 3.500 0.500 0.500

GROUP II WIND

WIND ON SUPERSTRUCTURE INTENSITIES * WIND FORCE ARM * WIND ON PIER SUPERSTRUCTURE AREA*STD. TRANS. LONG. WIND FT1 FL1 FT2 FL2 FT3 FL3 FT4 FL4 FT5 FL5 APT APL PT PL
655. 655. 1 50 0 44 6 41 12 33 16 17 19 5.729 5.729 1.610 8.820

STD. * WIND ON SUPERSTRUCTURE INTENSITIES * STD. * WIND ON LIVE LOAD INTENSITIES * LENGTHS OF LL * WIND ON LL ARMS ""ND FT1 FL1 FT2 FL2 FT3 FL3 FT4 FL4 FT5 FL5 WIND FT1 FL1 FT2 FL2 FT3 FL3 FT4 FL4 FT5 FL5 TRANS. LONGI. APT APL 50 0 44 6 41 12 33 16 17 19 1 100 0 88 12 82 24 66 32 34 38 87.9 87.9 13.000 13.000

MISCELLANEOUS FORCES

FORCE AND ARMS EXPANSION SHRINKAGE STREAM FLOW APT APL COEFFICIENT COEFFICIENT PT PL CENTRI. TRACTION FORCE AND ARMS EXPANSION SHRINKAGE FL 0.000 13.000 13.000 0.00018000 0.00044000 1.056 5.885 5.560

DEAD LOAD SUPERSTRUCTURE AND LIVE LOAD CASES

I.D.	NL	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	
D.L.	0	154.900	0.000	0.000	154.900	0.000	166.600	0.000	166.600	175.100	0.000	0.000	175.100	
LL 1	1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	39.483	0.000	0.000	62.516	
LL 2	2	0.000	0.000	0.000	0.000	0.000	3.290	0,000	62.516	75.677	0.000	0.000	62.516	
LL 3	3	0.000	0.000	0.000	18.096	0.000	65.806	0.000	83.903	75.677	0.000	0.000	62.516	
LL 4	1	42.774	0.000	0.000	8.225	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
LL 5	2	59.225	0,000	0.000	70.741	0.000	23.032	0.000	0.000	0.000	0.000	0.000	0.000	
LL 6	3	59,225	0.000	0.000	72.387	0.000	85.548	0.000	37.838	0.000	0.000	0.000	0.000	
LL 7	1	0.000	0.000	0.000	19.741	0.000	62.516	0.000	19.741	0.000	0.000	0.000	0.000	
LL 8	2	0.000	0.000	0.000	19.741	0.000	67.451	0.000	82.258	34.548	0.000	0.000	0.000	
LL 9	3	34.548	0.000	0.000	82.258	0.000	72.387	0.000	82.258	34.548	0.000	0.000	0.000	
LL10	2	0.000	0.000	0.000	31.258	0.000	78.967	0.000	70.741	23.032	0.000	0.000	0.000	
LL11	3	0.000	0.000	0.000	31,258	0.000	78.967	0.000	72.387	85.548	0.000	0.000	37.838	
LL12	2	42.774	0.000	0.000	8.225	0.000	0.000	0.000	0.000	39.483	0.000	0.000	62.516	
LL13	3	42.774	0.000	0.000	8.225	0.000	3.290	0.000	62.516	75.677	0.000	0.000	62.516	

MEMBER PROPERTIES

CN	KT KTM	COTB	COTBM		TRC	TLC	DFC DFL	COLU	MN PROPER	FKBR FKUBR	PCBR PCUBR	PCL FLU	UFMT UFMB	EITTB EILTB	PSIT PSIB	RGT
	1359850.6 1359850.6								65635 .5000	9.8 19.7	208179.9 51658.3	12187.1 17.0	107356.6 107356.6	313663.1 313663.1	0.6	12.
2	1359850.6 1359850.6								65635 .5000	9.8 19.7	208179.9 51658.3	12187.1 17.0	107356.6 107356.6	313663.1 313663.1		12.
CN	CO	163 163	-	OMLR OMRL	FMWT UFEM		MLP1 MRP1	CA FML FMR		TIES PMLP3 PMRP3	PMLP4 PMRP4	FMLP5 FMRP5	PMLP6 PMRP6	FMLP7 FMRP7		LP8 RP8
2	0.5000 1512448.0				113.793 88967.		.8160 .0290	0.0		1.2314).7882	3.7723 2.0138	3.1875 3.1875	2.0138 3.7723	0.0474		0290 8160
					COL	UMN MOM				(KIPS), R	EACTIONS (KI	PS)				
	LOAD	cc	DL I	PC	MT	v		WERSE MB	RF	ML	MR	MT	LONGIT	TUDINAL MB		MF
UNI	T F.AT CL.C	AP 1 2	-0.3		4.131 4.131	0.5		.369 .369	0.324				0.500	9.500 9.500		.500 .500
EXP	PANSION OF C	AP 1 2		000	88.050 88.050	13.43 -13.43		.217	0.000				0.000	0.000		000
SHR	INKAGE OF C	AP 1 2			15.234	32.8		.752 .752	0.000				0.000	0.000		000
DEA	D LOAD TOTA	L 1	516.		65.659	4.5	97 21	.685	547.963	1097.67	8 -1163.337	0.000	0.000	0.000	0.	.000
		2		674 -	50.800	-4.5	97 -36	.545	595.912	1282.30	3 -1231,503	0.000	0.000	0.000	0.	.000
STR	EAM FLOW	1 2	0,1	342 342	4.362 4.362	0.52		.670 .670	0.342 -0.342				2.943 2.943	55.908 55.908		908
CEN	T. FORCE 1	LN 1	-4.6		22.968 22.968	2.78		.852 .852	4.636				0.000	0.000		000
	ON SUBSTR	. 1	-0.5	522 522	6.651 6.651	0.80		.644 .644	0.522 -0.522				-4.410 -4.410	-83.790 -83.790	-83. -83.	
GRO	UP 2 WIND 1	1 1 2	18.4		41.940	17.18		.480 .480	18.490 -18.490	0.000			-4,410 -4,410	-83.790 -83.790	-83.	
GRO	UP 2 WIND 1	2 1 2	18.4		41.940 41.940	17.18		.480	18.490 -18.490				4.410	83.790 83.790		790
GRO	UP 2 WIND 2	1 1 2	16.3 -16.3		25.705 25.705	15.21 15.21		.380	16.334 -16.334	0.000				-132.382 -132.382	-132. -132.	
GRO	UP 2 WIND 2	2 1 2	16.1 -16.3		25.705 25.705	15.21 15.21		.380	16.334 -16.334	0.000	0.000		6.375 6.375	132.382 132.382	132.	200
GRO	UP 2 WIND 3				17.588 17.588	14.23	3 152 3 152	.829 .829			0.000			-180.975 -180.975		
	UP 2 WIND 3		15.2 -15.2		17.588 17.588	14.23		.829 .829		0.000	0.000			180.975 180.975		
	UP 2 WIND 4				95.942 95.942	11.61				0.000 -95.942	95.942 0.000			-213.370 -213.370		
	UP 2 WIND 4				95.942 95.942	11.61		.696 .696	12.381	0.000 -95.942	0 -95.942 2 0.000			213.370 213.370		
GRO	UP 2 WIND 5				52.649 52.649	6.37			6.631 -6.631		0.000 0.000			-237.666 -237.666		
GRO	UP 2 WIND 5	2 1 2			52.649 52.649	6.37			6.631 -6.631		0 -52.649 0.000		10.632	237.666 237.666	237. 237.	
GRO	UP 3 WIND 1		12.6 -12.6		78.893 78.893	9.54		.538 .538	12.876 -12.876		78.893 0.000		-1.323 -1.323	-25.137 -25.137		
GRO	UP 3 WIND 1				78.893 78.893	9.54		.538 .538	12.876 -12.876		78.893 0.000		1,323 1,323	25.137 25.137	25. 25.	
	JP 3 WIND 2				69,666 69.666	8.43		.544 .544	11.350 -11.350					-56.592 -56.592	-56. -56.	
GRO	UP 3 WIND 2				69.666 69.666	8.43		.544	11.350 -11.350		-69.666 0.000		2.440	56.592 56.592	56. 56.	592 592

COLUMN MOMENTS(KIP-FEET), SHEARS(KIPS), REACTIONS(KIPS)

				TRANSVERSE					LONGIT	UDINAL	
LOAD	COL PC	MT	V	MB	RF	ML	MR	MT	V	MB	MF
'JP 3 WIND 3 1	1 10.587 2 -10.587		7.874	84.548 84.548	10.587	0.000	-65.052 0.000	-27.580 -27.580	-3.557 -3.557	-88.046 -88.046	-88.046 -88.046
anoun a urun a a	1 10.587	CE 050	7 074	84.548	10 507	0.000	-65.052	27.580	3.557	88.046	88.046
GROUP 3 WIND 3 2	1 10.587 2 -10.587		7.874	84.548	10.587	-65.052	0.000	27.580	3.557	88.046	88.046
GROUP 3 WIND 4 1	1 8.552	52.748	6.384	68.557	8.552	0.000	-52.748	-35.892	-4.301	-109.016	-109.016
GROUP 3 WIND 4 1	2 -8.552		6.384	68.557	-8.552	-52.748	0.000	-35.892	-4.301	-109.016	-109.016
GROUP 3 WIND 4 2	1 8.552	52.748	6.384	68.557	8.552	0.000	-52.748	35.892	4.301	109.016	109.016
	2 -8.552		6.384	68.557	-8.552	-52.748	0.000	35.892	4.301	109.016	109.016
GROUP 3 WIND 5 1	1 4.481	28.141	3.406	36.574	4.481	0.000	-28.141	-42.126	-4.860	-124.743	-124.743
	2 -4.481	28.141	3.406	36.574	-4.481	-28.141	0.000	-42.126	-4.860	-124.743	-124.743
GROUP 3 WIND 5 2	1 4.481	28.141	3.406	36.574	4.481	0.000	-28.141	42.126	4.860	124.743	124.743
	2 -4.481	28.141	3.406	36.574	-4.481	-28.141	0.000	42.126	4.860	124.743	124.743
LIVE LOAD LL 1	1 -12.581	-94.971	-9.429	-84.183	-12.581	0.000	94.971	0.000	0.000	0.000	0.000
	2 114.580	143.901	9.429	35.253	114.580	270.268	-414.168	0.000	0.000	0.000	0.000
LIVE LOAD LL 2	1 12.205	30.781	1.217	-7.658	12,205	0.000	-30.781	0.000	0.000	0.000	0.000
	2 191.794	-0.049	-1.217	-23.074	191.794	414.218	-414.168	0.000	0.000	0.000	0.000
LIVE LOAD LL 3	1 70.348	179.004	12.623	60.835	70.348	0.000	-179.004	0.000	0.000	0.000	0.000
	2 205.050	-140.781	-12.623	-99.058	205.050	513.532	-372.752	0.000	0.000	0.000	0.000
LIVE LOAD LL 4	1 60.342	-106.151	-6.964	-26.166	60.342	283.378	-177.227	0.000	0.000	0.000	0.000
	2 -9.343	70.272	6.964	62.045	-9.343	-70.272	0.000	0.000	0.000	0,000	0.000
LIVE LOAD LL 5	1 155.804	-77.217	-4.643	-10.996	155.804	392.366	-315.148	0.000	0.000	0.000	0.000
	2 -2.806	40.401	4.643	47.813	-2.806	-40,401	0.000	0.000	0.000	0.000	0.000
LIVE LOAD LL 6	1 190.381	101.574	9.119	71.679	190.381	353.129	-454.703	0.000	0.000	0.000	0.000
	2 39.117	-129.429	-9.119	-43.823	39.117	129,429	0.000	0.000	0.000	0.000	0.000
LIVE LOAD LL 7	1 66.982	165.914	12.612	73.713	66.982	0.000	-165.914	0.000	0.000	0.000	0.000
	2 35.016	-153.588	-12.612	-86.038	35.016	153.588	0.000	0.000	0.000	0.000	0.000
3 LOAD LL 8	1 92.791	294.451	23.455	151.190	92.791	0.000	-294.451	0.000	0.000	0.000	0.000
	2 111.207	-299.736	-23.455	-145.904	111.207	299.736	0.000	0.000	0.000	0.000	0.000
LIVE LOAD LL 9	1 178.632	217.199	18.071	126.146	178.632	205.992	-423.192	0.000	0.000	0.000	0.000
	2 96.767	-240.594	-18.071	-102.751	96.767	240.594	0.000	0.000	0.000	0.000	0.000
LIVE LOAD LL10	1 107.114	298.560	23.455	147.078	107.114	0.000	-298.560	0.000	0.000	0.000	0.000
	2 96.884	-295.624	-23.455	-150.014	96.884	295.624	0.000	0.000	0.000	0.000	0.000
LIVE LOAD LL11	1 91.411	229.345	17.138	96.286	91.411	0.000	-229.345	0.000	0.000	0.000	0.000
	2 183.987	-204.829	-17.138	-120.801	183.987	430.438	-225.609	0.000	0.000	0.000	0.000
LIVE LOAD LL12	1 47.761		-16.393	-110.349	47.761	283.378	-82.256	0.000	0.000	0.000	0.000
	2 105.237	214.172	16.393	97.298	105.237	199.996	-414.168	0.000	0.000	0.000	0.000
LIVE LOAD LL13	1 65.292	-67.833	-5.172	-30.442	65.292	255.040	-187.207	0.000	0.000	0.000	0.000
	2 164.206	63.200	5.172	35.074	164.206	309.551	-372.752	0.000	0.000	0.000	0.000

CAP ANALYSIS AND DESIGN DATA

CAP MOMENTS AND SHEARS

																				-					
							MC	MENT	SK	IP-FEET)						•			S	HEARS (KIPS)			
N	r D.	L.TO	Т.	Gl M	AX.	+ (31 1	AX.	G	2 MAX.+	G2	MAX	G3	MAX.	+ G	3 MAX	DL T	LT D	L T.R	T G1	+ LT	G1 + RT	G1	- L/T	G1 - R1
P 1		-3.6	04	-3	.60	4	-3	.604		-3.604		-3.6	04	-3.60	4	-3,604	-4.	436 -2	05.80	6	4.436	-205.806	-4	.436	-334.384
P 2	-12	32.1	21 -	1232	.12	1 -1	1971	.441	-1	232.121	-12	32.1	21 -12	32.12	1 -1	674.827	-221.	504 -2	21.50	4 -22	1.504	-221.504	-350	.081 -	-350.081
C 1L	-14	26.9	81 -	1426	.98	1 -2	2278	.807	-1	426.981	-14	26.9	81 -14	26.98	1 -1	937.057	-223.	892		-22	3.892		-352	.470	
C 1R	-15	12.3	38 -	1306	.15	7 -2	2585	.788	-1	327.816	-17	02.5	32 -12	86.31	5 -2	292,303		4	47.85	1		774.926			420.537
P 3	-11	21.5	14	-939	. 23:	2 -1	1928	.644	-	949.655	-12	98.6	55 -9	16.84	0 -1	732.591						772.537			
P 4																573.057						413.222			
P 5		87.5						.366		24,644						329.091						402.644			
P 6		94.2						.453		850.288			04 13			610.899	222.			2 393		48.114			
P 7		95.6								795.692						647.115	-4.		-4.90		7.536	37.536			
P 8		56.1						.817		813.987			03 13			560.123		485 -2				-208.995			
P 9																667,811	70.00					-457.782			
P10																838.476				-46		-458.465	-807		-807.040
C 2L C 2R																139.373	-483.		50.15		0.034	385.875		.420	250.152
P11																850.423	247				3.486	383.486		764	
P12		-3.6						.605		-3.605				-3.604		-3.605	232.			6 36		4.436			4.436
													CA	P DES	IGN	DATA									
PT.	M+ U	NF.	M-	UNF		TOP	REI	NFOR	CE.	BOT.RI	EINF	ORCE		LEFT S	STIR	RUPS	RI	GHT ST	IRRUP	S	D	FC	PS	FS/FI	FS/FZ
	K-F	T.	K	-FT.		AS	S 1	O.SI	ZE	AS	NO.	SIZE	M.S	P. AV	/IN	BAR&SPAC	M.SP.	AV/IN	BARS	SPAC	IN.	PSI		RATIO	RATIO
P 1	-2.	773	-	2.77	3	1.5	76	4 #	11	1.76	4	# 11	0.	00 0.0	000	#5@ 0.00	21.98	0.066	#5@	9.35	48.00		0.10	0.000	0,005
P 2	-947.	785	-128	8.32	9	10.2	26	7 #	11	1.76	4	# 11				#5@ 8.89									0.963
	1068.									1.76						#5@ 8.76									0.910
	-778.									1.76						#5@ 4.89									0.942
	-696.							6 #		1.76						#5@ 4.89									1.039
P 5		378						4 #		1.76						#5@ 6.41									0.000
	1020.							4 #		8.70						#5@ 7.04 #5@ 0.00									0.932
	1016.							4 #		8.72						#5@ 0.00									0.928
	-780.							7 #		1.76						#5@ 5.97									0.905
	-869.									1.76						#5@ 4.61									1.002
	1184.									1.76						#50 4.59									0.847
	1063.									1.76						#5@ 7.36							0.66	0.560	0.895
P12		773						4 #		1.76				98 0.0	081	#5@ 7.64	0.00	0.000	#5@	0.00	48.00		0.10	0.000	0.005
*****E	***	FS/F	Z RA	TIO	EXC	EED9	3 1.	01 *	**																
										COLUMN	ANA	LYSI	S AND	DESIGN	V OU	TPUT									
										CF	RITIO	CAL	COLUMN	LOADS	S										
CN E	GR	LLC	WC	R		C		PP		MTF	ML		PM	MI	IM	MLM	PU	MT	U	MLU	PU/P	м в	D		
1 7	1	LLIO	0.0			C	S	916.	8	798.9	7	. 7	916.8	798	5.9	360.5	2083.7	1816	.0	019.4	2,27	3 42.00	42,	0.0	
1 B	3 1	LL 6	0.0			C	S 1	142.	4	296.0	72	.7	1142.4	399	8.6	460.4	2927.9	1028	.3 1	184.0	2.56	5 42.00	42.	0.0	
2 1	1	LL 8	0.0			C	S	963.	0	-651.4	7	. 7	963.0	651	1.4	381.0	2381.6	1611	. 6	942.6	2.47	4 42.00	42.	0.0	
2 E	1	LL 3	0.0			C	S 1	203.	1	-150.4	72	.7	1203.1	421	1.1	488.9	2922.1	1026	.0 1	191.2	2.43	0 42.00	42.	00	

COLUMN DESIGN DATA

2 # 11 18.72 1.061 1.00 0.086

2 # 11 18.72 1.061 1.00 0.156

2 # 11 18.72 1.061 1.00 0.136

2 # 11 18.72 1.061 1.00 0.274

PS BD12 BD

SUMPU

1889,

1945.

1889.

2044.

SUMPC DEL.T

65190. 1.000

56248. 1.000

65137. 1.000

60452. 1.000

DEL.L

1.123

1.151

1.130

1.161

CM R PHIC

0.400 2 0.70

0.400 2 0.70

0.428 2 0.70

0.400 2 0.70

T B FACE 1 B FACE 2 D FACE 3 D FACE 4
B NO.SIZE NO.SIZE NO.SIZE NO.SIZE AS

4 # 11 2 # 11

2 # 11

2 # 11

2 # 11

4 # 11

4 # 11

4 # 11 4 # 11

CN B

T

1 B

2 T

2 B

4 # 11

4 # 11

4 # 11

FOOTING 1 DESIGN LOADS

P	G	LL	ID	WC	ES	C	S	P	MT	VT	ML	VL	P4	Р3	P2	Pl	MTF	VBF	VPF	LOAD
		LL	9	0.0		С	S	704.880	209.685	27.204	55.908	2.943	118.004	102.240	174.835	190.599	16.866	0.000	-0.384	MAX.P1
1	1	LL	9	0.0		C	s	1041.819	361.198	48.059	72.680	3.825	162.662	142.169	268.218	288.710	25.905	0.000	-0.499	MAX.MT
1	1	LL	9	0.0		C	s	1041.819	361.198	48.059	72.680	3.825	162.662	142.169	268.218	288.710	25.905	0.000	-0.499	MAX.VT
1	1	LL	9	0.0		C	S	1041.819	361.198	48.059	72.680	3.825	162.662	142.169	268.218	288.710	25.905	0.000	-0.499	MAX.VP
1	1	LL	6	0.0		C	S	1062.390	265.837	32.385	72.680	3.825	184.659	164.167	254.449	274.941	21.174	0.000	-0.499	MAX.ML
1	1	LL	9	0.0		С	S	1041.819	361.198	48.059	72.680	3.825	162.662	142.169	268.218	288.710	20.774	0.000	-0.499	MAX.VL
1	4	LL	9	0.0	Ε	С	s	704.881	376.902	40.639	55.908	2.943	92.499	76.735	200.340	216.104	19.345	0.000	-0.384	MAX.P3

FOOTING 1 ANALYSIS/DESIGN RESULTS

FOO	TING SI	ZE		* BA	R REINFOR	CEMENT	STEEL	*	SECTIO	N CAPACI	TIES	*
В	D	T	P1/PA	AS	NO.SIZE	SPAC.	PLACEMENT	MT.	VB	VP	DS	FC
7.200	7.200	3.500	0.993	0.22	9 # 4 @	9.500	TOP LONG	31.545	34.094	68.189	28.250	0.000
				0.27	10 # 4 @	8.625	BOT.TRAN	35.646	34.698	69.396	28.750	0.000

NUMBER OF PILES = 5 BP = 2.100 DP = 2.100

FOOTING 2 DESIGN LOADS

F	LLID	WC	ES	C	S	P	MT	VT	ML	VL	P4	P3	P2	P1	MTF	VBF	VPF	LOAD
2 4	LL13	0.0	s	C	S	715.477	486.763	40.450	55.908	2.943	81.618	65.854	215.459	231.223	20.815	0.000	-0.384	MAX.P1
2 4	LL13	0.0	S	C	S	930.120	632.792	52.584	72.680	3.825	106.104	85.612	280.096	300.589	27.060	0.000	-0.499	MAX.MT
2 1	LL 3	0.0		C	s	1116.971	-108.789	-17.633	72.680	3.825	220.418	199.926	240.522	261.015	23.212	0.000	-0.499	MAX.VT
2 1	LL 3	0.0		С	s	1116.971	-108.789	-17.633	72.680	3.825	220.418	199.926	240.522	261.015	23.212	0.000	-0.499	MAX.VP
	LL 3	0.0		C	S	1116.971	-108.789	-17.633	72.680	3.825	220.418	199.926	240.522	261.015	22.235	0.000	-0.499	MAX.ML
2 1	LL 3	0.0		C	s	1116.971	-108.789	-17.633	72.680	3.825	220,418	199.926	240.522	261.015	22.235	0.000	-0.499	MAX.VL
2 4	LL12	0.0	s	C	s	671.166	516.047	47.553	55.908	2.943	66.310	50.547	213.042	228.806	20.580	0.000	-0.384	MAX.P3

FOOTING 2 ANALYSIS/DESIGN RESULTS

FOO	TING SI	ZE		* BA	R RE	INFO	RCEMENT	STEEL		SECTIO	N CAPACI	TIES	*
В	D	T	P1/PA	AS	NO.	SIZE	SPAC.	PLACEMENT	MT.	VB	VP	DS	FC
7.200	7.200	3.500	0.963	0.23	9	# 4	8 9.500	TOP LONG	31.545	34.094	68.189	28.250	0.000
				0.28	11	# 4	® 7.750	BOT.TRAN	39.178	34.698	69.396	28.750	0.000

NUMBER OF PILES = 5 BP = 2.100 DP = 2.100

PROJECT: <u>I-75 / I-575 NORTHWEST CORRIDOR</u>
JOB NUMBER <u>NH000-0073-03(242)</u>
CALC NO. <u>BR#31</u>

SUBJECT: Bent Design Output - Bent 3 SHEET NO.
BY: JCR DATE: 11/30/2009 SHEET REV.

Sufficient sample calculations representative of the scope and conditions in the design calculation were performed and the results compared to demonstrate the computer program adequacy.

OPTIONS CAN COL LLC D M S PSI PSI

GEORGIA DEPARTMENT OF TRANSPORTATION

PRECONSTUCTION DIVISION - OFFICE OF BRIDGE & STRUCTURAL DESIGN THE ANALYSIS AND DESIGN OF PIERS FOR BRIDGES - V 4.2.07 - AASHTO SPECS 1984 INTERIM

REVISED: JUNE 30, 2008 1-75 OVER NOONDAY CREEK - BENT 3

DESIGN DATA DESIGN NO. NO. NO. SKEW ANG F'C FC N FY FS EC ES CONC. Z * * * CAP REINFORCING STEEL * * * CAP
OPTIONS CAN COL LLC D M S PSI PSI PSI PSI KSI KSI STRAIN FACT MAIN STR MAX MAX MIN MIN TOP MIN DEPTH BOT
SIZE SIZ TOP BOT SIZE NO. CL. S.SP INCR. CL.

D D D L 2 2 13 26-30-00 3500. 1400. 8. 60000. 24000, 3587. 29000, 0.0030 170. 11 5 10 11 6 4 2.00 4.00 3.00 2.00

COLUMN REINFORCING STEEL R KL OC OF CM BD1 BD2 IMPACT SOIL WT ALL.S.P. MIN MAX EDGE PILE REBAR ALL.PILE I MIN.P MAX.P CL.SP. CLEAR MODE COEF & KCF KSF PL SP PL SP DIST DEPTH CLEAR CAPACITY UPLIFT P 1.00 8.00 2.25 2.625 2 2.00 0.00 0.90 0.00 1.00 0.00 23.00 0.120 0.000 3.00 5.00 1.500 1.000 1.000 192.000 0.000 P

CAP DATA BC DE BE DH LH XB1 XB2 XB3 XB4 XB5 XB6 XB7 XBS 11 C 9.750 0.000 4.250 3.500 12 C 29.500 0.000 4.250 3.500 13 C 9.750 0.000 4.250 3.500 0.000 0.000 0.000 0.000 8.065 7.190 0.000 0.875 0.186 4.563 4.563 4.563 9.126 0.000 0.875 7.190 0.000 0,000

COLUMN DATA CN P I T S HT A DT BT DB BB DL FLEX ND NB SZ SLOPE EP AP 21 0 C T 21.000 0.000 3.500 3.500 0.000 0.000 2.125 0.000 2 4 11 0 0 0 99 99 11 0 0 0 0.000 0.000 0.000 22 0 C T 21.000 0.000 3.500 3.500 0.000 0.000 2.125 0.000 2 4 11 0 0 0 99 99 11 0 0 0 0.000 0.000 0.000

FOOTING DATA DEL.T R.B/D R.D/B S.HT. NP SYM. BP DP SET. 0.500 0.000 0.000 0.000 7 1 0.000 0.000 0.000 0.500 0.000 0.000 0.000 7 1 0.000 0.000 0.000 CN S/P B D DEL.B DEL.D 31 P 6.000 6.000 3.500 0.500 0.500 32 P 6.000 6.000 3.500 0.500 0.500

GROUP II WIND GROUP II WIND

SUPERSTRUCTURE AREA*STD. WIND ON SUPERSTRUCTURE INTENSITIES * WIND FORCE ARM * WIND ON PIER

TRANS. LONG. WIND FT1 FL1 FT2 FL2 FT3 FT3 FT4 FL4 FT5 FL5 APT APL PT PL

709. 709. 1 50 0 44 6 41 12 33 16 17 19 5.729 5.729 1.750 10.220

GROUP III WIND

. * WIND ON SUPERSTRUCTURE INTENSITIES * STD. * WIND ON LIVE LOAD INTENSITIES * LENGTHS OF LL * WIND ON LL ARMS DFT1 FL1 FT2 FL2 FT3 FL3 FT4 FL4 FT5 FL5 WIND FT1 FL1 FT2 FL2 FT3 FL3 FT4 FL4 FT5 FL5 TRANS. LONGI. APT 1 50 0 44 6 41 12 33 16 17 19 1 100 0 88 12 82 24 66 32 34 38 95.0 95.0 13.000 APL 95.0 13.000 13.000

MISCELLANEOUS FORCES
 CENTRI.
 TRACTION FORCE AND ARMS
 EXPANSION SHRINKAGE
 STREAM FLOW

 FT
 FL
 APT
 APL
 COEFFICIENT COEFFICIENT
 PT
 PL

 5.580
 3.480
 13.000
 13.000
 0.00018000
 0.00044000
 5.521
 10.336

DEAD LOAD SUPERSTRUCTURE AND LIVE LOAD CASES P1 P2 P3 P4 P5 P6 P7 P8 P11 D.L. 0 167.700 0.000 0.000 167.700 0.000 191.100 0.000 191.100 208.000 0.000 0.000 208.000 0.000 167.700 0.000 0.000 0.000 9.727 0.000 8.663 0.000 75.726 0.000 82.209 0.000 19.468 0.000 19.468 0.000 0.000 0.000 0.000 0.000 0.000 0.000 62.727 1 0.000 0.000 38.937 0.000 82.209 0.000 67.062 0.000 91.937 0.000 0.000 0.000 20.558 0.000 0.000 LL 3 0.000 0.000 82.209 0.000 0.000 0.000 0.000 LL 4 1 44.336 0.000 0.000 2 62.714 LL 5 0.000 0.000 0.000 87.621 0.000 32.454 67.062 0.000 19.468 LL 6 62.714 0.000 0.000 0.000 62.714 0.000 0.000 0.000 LL 7 0.000 0.000 0.000 0.000 LL 8 0.000 0.000 0.000 74.636 0.000 86.531 31.363 0.000 31.363 LL 9 0.000 0.000 86.531 0.000 82.209 86,531 31.363 LL10 2 0.000 LL11 3 0.000 0.000 0.000 29.196 0.000 84.363 0.000 0.000 0.000 29.196 0.000 84.363 0.000 82.209 88.698 0.000 0.000 33.531 LL12 2 44.336 LL13 3 44.336 0.000 0.000 0.000 0.000 0.000 8.663 0.000 38.937 0.000 0.000 67.062 0.000 0.000 8.663 0.000

OFINE PENNING IT ALC - Braiting Force from U pin FZ = 0.05 + [(2 x 80/5) + 0.64 % + 186] = 3+8k

MEMBER PROPERTIES

M	KT KTM		OTB OBT	COTBM COBTM	TLR	TRC	TLC		DFC DFL		N PROPER KL PDF	TIES FKBR FKUBR	PCBR PCUBR	PCL FLU	UFMT UFMB	EITTB EILTB	PSIT PSIB	RGT
	1230341. 1230341.										18611 5000	10.8	172792.2 41904.8	10050.3	87881.5 87881.5	313663.1 313663.1		12.
2	1230341. 1230341.										8611 5000	10.8	172792.2 41904.8	10050.3 18.9		313663.1 313663.1		12.
CN	CO K		KMI KMI		OMLR OMRL	FMWT UPEM		PMLP:		CAE FMLE FMRE		IES MLP3 MRP3	PMLP4 FMRP4	FMLP5 FMRP5	FMLP6 FMRP6	PMLP7 PMRP7		LP8 RP8
2	0.500 1568142.			3.4 0.2		161.812 79736.		0.82		0.98		.6840 .8678	4.3662 2.3030	3.6875 3.6875	2.3030 4.3662	0.0368		0252 8239
						COL	JMN MON				, SHEARS	(KIPS), RE	EACTIONS (KI	PS)				
	LOAD		C01	4 1	PC	MT	7	Į.	TRANSVI	ERSE (B	RF	ML	MR	MT	LONGIT	MB MB		MF
UNI	T F.AT CL	.CAP	1 2	-0.3		4.643	0.5		5.8		0.315					10.500 10.500		.500
EXP	ANSION OF	CAP	1 2	0.0		90.817 90.817	12.0		162.0 -162.0		0.000					0.000		.000
SHR	INKAGE OF	CAP	1 2	0.0		21.998	-29.4 29.4		-396.1 396.1		0.000	0.000				0.000		.000
DEAL	D LOAD TO	TAL	1	572.7		21.084	0.3	322	-14.3	329	607.404	1458,554	-1479.639	0.000	0.000	0.000	-0	.000
			2	670.2	210	12,078	-0.3	322	-18.8	333	704.893	1771.496	5 -1783.574	0.000	0.000	0.000	0	.000
STR	EAM FLOW		1 2	1.7		25.633 25.633	2.7		32.3		1.738 -1.738					108.528 108.528		.528 .528
TRAC	C. PORCE	L LN	1 2	1.1		7.209 7.209	0.7		9.0		1.173 -1.173							.944
	r. FORCE	LN	1 2	3.7		23.185 23.185	2.4		29.2 29.2		3.773 -3.773					42.326 42.326		.326
WINI	ON SUBS	TR.	2	0.5		8.125 8.125	0.8		10.2		0.551 -0.551					-107.310 -107.310	-107.	
GROI	UP 2 WIND	11	2	16.6		55.422 55.422	16.7		196.0		16.698 -16.698					104.086 104.086	104	
GRO	JP 2 WIND	1 2	1 2	16.6 -16.6		55.422 55.422	16.7		196.0		16.698 -16.698	0.000 -155,422	0.000			318.706 318.706		.706
GROI	JP 2 WIND	2 1		15.7		46.559 46.559	15.7		184.6		15.727 -15,727		0.000			27.839 27.839		.839 .839
GRO	JP 2 WIND					28.934 28.934	13.8		162.6				0.000			344.218 344.218	344.	.218
			2	-15.7	24 1	46.534 46.534	15.7		184.8	357	-15.724	-146.534	0.000	10.176	-2.432	-35.724 -35.724		.724
	JP 2 WIND		2	-11.8	860 1		11.9	984	140.3	87	-11.860	-111.283	0.000	91.695	15.402	382.413 382.413	382.	.413
	JP 2 WIND		2	-13.7	84 1	28.842 28.842	13.8	375	162.5	38	-13.784	-128.842		-9.730	-4.966	-103.467 -103.467	-103	.467
	JP 2 WIND		2		32	81.841 81.841	8.8	314	103.2	44	8.632 -8.632	-81.841		91.723	15.406	382.509 382.509	382.	.509
	JP 2 WIND		2	9.1	00	86.113 86.113	9.2	74	108.6	34	9.100	-86.113	0.000	-37.082	-8.449	-196.553 -196.553	-196	.553
	JP 2 WIND		2	-2.9	82	30.299	3.2	63	38.2	23	2.982	-30,299	0.000	79.321	13.827	340.302 340.302	340.	.302
GROU	JP 3 WIND	1 1		-11.4	32	86.100 86.100	9.2		108.6		11.432 -11.432	-86,100		47.434	2.959	103.287 103.287	103.	.287
i	JP 3 WIND	1 2		-11.4		86.100 86.100	9.2		108.6		11.432 -11.432		0.000			167.673 167.673	167. 167.	
GROU	JP 3 WIND	2 1		10.7		81.066 81.066	8.7		102.2		10.754 -10.754		-81.066 0.000			54.421 54.421	54. 54.	.421 .421

		.001	JUMN MOMENT	TS (KIP-FEET) TRANSVERSE	, SHEARS (KIPS), REA	CTIONS (KIP	S)	LONGIT	UDINAL.	
LOAD	COL F	C MT	V	MB	RP	ML	MR	MI		MB	MF
GROUP 3 WIND 2 2	1 9.4 2 -9.4		7.652	89.638	9.406	0.000	-71.055	60.067	6.567	184,023	184.023
	2 -9.4	06 71.055	7.652	89,638	-9.406	-71.055	0,000	60,067	6.567	184.023	184.023
GROUP 3 WIND 3 1	I 10.7	52 81.052	8.729	102.249	10.752	0.000	-81.052	13.908	-0.012	13,685	13.685
	2 -10.7	52 81.052	8.729	102,249	-10.752	-81.052	0.000	13.908	-0.012	13,685	13.685
GROUP 3 WIND 3 2	1 8.0	56 61.030	6.572	76.991	8.056	0.000	-61.030	69.226	7.379	208.502	208.502
	2 -8.0		6.572	76.991	-8.056	-61.030	0.000	69.226	7.379	208.502	208.502
GROUP 3 WIND 4 1	1 9.3	99 71.003	7.646	89.572	9.399	0.000	-71.003	-2,336	-1,451	-29.730	-29.730
GROOF 3 HIND 4 1	2 -9.3		7.646	89.572	-9.399	-71.003	0.000	-2.336	-1.451	-29.730	-29.730
GROUP 3 WIND 4 2		04 44 303	4 991	FF 994		0.000	44 300	cn 040			
GROUP 3 WIND 4 2	1 5.8 2 -5.8		4.771	55.894 55.894	5.804 -5.804	-44.307	0.000	69.249	7.381	208.563	208,563
GROUP 3 WIND 5 1	1 6.1	31 46.733	5.033	58.956	6.131	0.000	-46.733	-24.658	-3.429	-89.387	-89.387
	2 -6.1		5.033	58.956	-6.131	-46.733	0.000	-24.658	-3.429	-89.387	-89.387
GROUP 3 WIND 5 2	1 1.8	61 15.032	1.619	18,963	1.861	0.000	-15.032	59.128	6.484	181.514	181.514
ONCOP 5 HEND 5 2	2 -1.8		1.619	18.963	-1.861	-15.032	0.000	59.128	6.484	181.514	181.514
				*** ***		2 440					0.240
LIVE LOAD LL 1	1 -14.9 2 120.9		-10.929 10.929	-105.639 47.368	-14.958 120.957	0.000	123.871 -540.855	0.000	0.000	0.000	0.000
											0.000
LIVE LOAD LL 2	1 7.5		-0.838	-25.145	7.591	0.000	-7.542	0.000	0.000	0.000	0.000
	2 204,4	07 31,013	0.838	-13.410	204.407	509.842	-540.855	0.000	0.000	0.000	0.000
LIVE LOAD LL 3	1 64.1		12.046	62.425	64.171	0.000	-190.534	0.000	0.000	0.000	0.000
	2 222.0	26 -146_745	-12.046	-106.214	222,026	633.515	-486.770	0.000	0.000	0.000	0.000
LIVE LOAD LL 4	1 63.4	39 -126.690	-7-606	-33.046	63.439	357.570	-230.880	0.000	0.000	0.000	0.000
	2 -10.4	40 86.291	7.606	73.445	-10.440	-86.291	0.000	0.000	0.000	0.000	0.000
LIVE LOAD LL 5	1 164.7	86 -111.573	-6.353	-21.832	164.786	505.788	-394.216	0.000	0.000	0.000	0.000
	2 -5.7		6,353	67.105	-5.788	-66.300	0.000	0.000	0.000	0.000	0.000
LIVE LOAD LL 6	1 203.8	06 87.858	7,443	68.434	203.806	455.210	-543.068	0.000	0.000	0.000	0.000
ALL TO LIVE ALL V	2 34.6		-7.442	-35.761	34.692	120.532	0.000	0.000	0.000	0.000	0.000
TIVE LOAD LL 7	1 69.8	52 189.061	13.022	84.411	69.852	0.000	100 051	0.000	0.000	0.000	
VE DOND DE 7	2 36.1		-13.022	-97.903	36.146	175.568	0.000	0.000	0.000	0.000	0.000
0.00.0000000			2000	60000							
LIVE LOAD LL 8	1 98.4 2 113.4		24.580 -24.580	174.133	98.499	0.000	0.000	0.000	0.000	0.000	0.000
	2 113.4	33 -340,134	241200	-103,303	113.425	240.124	0.000	0.000	0.000	0.000	0.000
LIVE LOAD LL 9	1 186.6		19,495	147.364	186.628	227.648	-489.670	0.000	0.000	0.000	0.000
	2 99.5	69 -283.826	-19.495	-125.560	99.569	283.826	0,000	0,000	0.000	0.000	0.000
LIVE LOAD LL10	1 110.7	66 345.437	24.580	170.743	110.766	0.000	-345.437	0.000	0.000	0.000	0.000
	2 101.2	32 -342,803	-24.580	-173.377	101.232	342.803	0.000	0.000	0.000	0.000	0,000
LIVE LOAD LLII	1 95.9	80 275.509	18.867	120.707	95.980	0.000	-275.509	0.000	0.000	0.000	0.000
	2 190.2		-18.867	-143,437	190.217	496.164	-243.385	0.000	0.000	0.000	0.000
LIVE LOAD LL12	1 48.4	81 -250.561	-18,535	-138,685	48,481	357,570	-107.009	0.000	0.000	0.000	0.000
PIAN DOND DUIS	2 110.5		18.535	120.812	110.517	272.422	-540.855	0.000	0.000	0.000	0.000
1802-1119-1209											
LIVE LOAD LL13	1 82.3 2 156.1		7.600	-65.841 40.562	82.304 156.193	321.813	-228.049	0.000	0.000	0.000	0.000
	2 156.1	93 119.043	7.600	40.502	156.193	367.727	-486.770	0.000	0.000	0.000	0.000

CAP ANALYSIS AND DESIGN DATA

					C	AP MOMENTS	AND SHEAKS						
			MOMENT:	S(KIP-FEET)			**			SHEARS	(KIPS)		
POINT	D.L.TOT.	G1 MAX.+	G1 MAX	G2 MAX. =	G2 MAX	G3 MAX.+	G3 MAX	DL T.LT	DL T.RT	Gl + L/T	G1 # RT	G1 - LT	G1 - RT
P 1	-4.118	-4.118	-4.118	-4.118	-4.118	-4.118	-4.118	-4.888	-222.898	-4.888	-222.898	-4.888	-359.050
P 2	-1681.727	-1681.727	-2660.660	-1681.727	-1681,727	-1681.727	-2267.914	-243,753	-243.753	-243.753	-243.753	-379.905	-379.905
CIL	-1896.121	-1896.121	-2994.187	-1896.121	-1896.121	-1896.121	-2553.646	-246.291		-246,291		-382.443	
C 1R	-1923.531	-1654.607	-3217.234	-1721.481	-2158.903	-1641.197	-2881.457		498.247		849.913		465.772
P 3	-1488.675	-1248.167	-2495.638	-1298.612	-1710.084	-1230.552	-2264.029	495.709	495.709	847.375	847.375	463.234	463.234
P 4	-1396.523	-1162.055	-2342.533	-1209-008	-1614.964	-1143.547	-2133.067	495.169	277.159	846.835	460.593	462.695	244.685
P 5	-162.041	151.413	-579.691	-37.031	-307.669	110.565	-516.216	263.924	263.924	447.358	447.358	231.449	231.449
P. 6.	1012.046	2133.348	670.798	1074.551	939.232	1723.909	755.664	250.688	2.258	434,122	29.226	218.214	-45.176
P 7	992.154	2085.791	635.103	992.154	992.154	1647.027	778.351	-10.977	-10.977	15.991	15,991	-58,412	-58.412
P B	911.868	2078.000	510.057	984,682	849,363	1662.193	630.838	-24.213	-272.643	2.755	-245,675	-71.647	-463.001
P 9	-1697.058	-1474.869	-2700.021	-1478.616	-1884.573	-1410.705	-2424-997	-299.114	-569.514	-272.146	-542.546	-489.473	-920.501
	-1803.038	-1575.833	-2871.285	-1581.628	-1993.101	-1512.457	-2571.800	-570.053	-570.053	-543.086	-543.086	-921.040	-921.040
· ·	-2302.945	-2052.144	-3678.305	-2067.573	-2504,994	-1992,476	-3263,749	-572.591		-545.624		-923.578	
€ 2R	-2318.646	-2318.646	-3492.843	-2318.646	-2318.646	-2318.646	-3021.758		298.681		444.273		298.681
P11	-2058.411	-2058.411	-3105.214	-2058.411	-2058.411	-2058.411	-2685.240	296.143	296.143	441.735	441.735	296.143	296.143
P12	-4.118	-4.118	-4.118	-4.118	-4.118	-4.118	-4.118	275.288	4.888	420.879	4.888	275,288	4.888

PT.	M+ UNF.	M- UNF.	TOP REINFORCE.	BOT.REINFORCE.	CAP DESIGN DATA LEFT STIRRUPS	RIGHT STIRRUPS	D I	PC PS	FS/FF FS/FZ
	K-FT,	K-FT.	AS NO.SIZE	AS NO.SIZE	M.SP. AV/IN BAR&SPAC	M.SP. AV/IN BAR&SPAC	IN.	PSI %	RATIO RATIO
P 1	-3.168	-3.168	1.76 4 # 11	1.76 4 # 11	0.00 0.000 #5@ 0.00	23.48 0.067 #5@ 9.24	51.00	0.09	0.000 0.006
	-1293.636	-1744.550	13.09 9 # 11	1.76 4 # 11	24.00 0.072 #5@ 8.57	24.00 0.072 #5@ 8.57	51.00	0.72	0.592 0.881
C 1	-1355.768	-2110.940	16.32 11 # 11	1.76 4 # 11	23.64 0.076 #5@ 8.18	11.82 0.270D#5@ 4.60	51.00	0.90	0.778 0.967
P 3	-1034.352	-1642.258	12.24 8 # 11	1.76 4 # 11	12.00 0.263D#5@ 4.71	12.00 0.263D#5@ 4.71	51.00	0.67	0.843 0.966
P 4	-966.248	-1542.850	11.45 8 # 11	1.76 4 # 11	12.00 0.263D#5@ 4.71	24.00 0.105 #5@ 5.89	51.00	0.63	0.775 0.908
P 5	19.735	-334.897	3.90 4 # 11	1.76 4 # 11	23.48 0.104 #5@ 5.96	23.48 0.104 #5@ 5.96	51.00	0.35	0.633 0.000
P 6	1294.988	612.376	1.76 4 # 11	10.38 7 # 11	24.00 0.095 #5@ 6.56	0.00 0.000 #5@ 0.00	51.00	0.57	0.931 0.905
P 7	1266.944	598.732	1.76 4 # 11	10.14 7 # 11	0.00 0.000 #5@ 0.00	0.00 0.000 #5@ 0.00	51.00	0.56	0.905 0.886
P 8	1247.514	516.356	1.76 4 # 11	10.10 7 # 11	0.00 0.000 #5@ 0.00	24.00 0.106 #5@ 5.83	51.00	0.55	0.955 0.872
P 9	-1178.446	-1767.411	13.30 9 # 11	1.76 4 # 11	24.00 0.117 #5@ 5.29	12.00 0.293D#5@ 4.23	51.00	0.73	0.736 0.893
P10	-1257.984	-1879.005	14.20 10 # 11	1.76 4 # 11	12.00 0.293D#5@ 4.23	12.00 0.293D#5@ 4.23	51.00	0.78	0.690 0.829
C 2	-1633.193	-2405.011	18.96 13 # 11	1.76 4 # 11	11.79 0.301D#5@ 4.12	23.58 0.102 #5@ 6.09	51.00	1.05	0.689 0.907
P11	-1583.393	-2065.569	15.71 11 # 11	1.76 4 # 11	23.64 0.100 #5@ 6.18	23.64 0.100 #5@ 6.18	51.00	0.87	0.539 0.946
P12	-3.168	-3.168	1.76 4 # 11	1.76 4 # 11	23.48 0.093 #5@ 6.67	0.00 0.000 #5@ 0.00	51.00	0.09	0.000 0.006

												COLUMN		PUT						
	T					E	C	S												
CN	В	GR	LLC	WC	R	S	F	P	PF	MTF	MLF	PM	MTM	MLM	PU	MTU	MLU	PU/PM	В	D
1	T	1	LL10	0.0			C	S	997.1	871.0	63.2	997.1	871.0	408.1	2064.4	1803.4	845.1	2.071	42.00	42.00
1	В	3	LL 6	3.2			C	s	1076.4	283.2	746.5	1076.4	376.8	878.1	2211.2	774.1	1804.1	2.054	42.00	42.00
2	T	1	LL 3	0.0			C	S	1337.8	-188.2	80.4	1337.8	468.2	580.5	2872.4	1007.9	1249.6	2.148	42.00	42.00
	D	2	1.1. 3	1 2			0	c	1196 1	22 9	746 6	1196 1	415 1	994 6	2309 0	909 3	1741 0	1 947	42 00	42 00

														COL	UMN DES	IGN DAT	A.								
C												D F			AS	PS	BD12	BD	SUMPU	SUMPC	DEL.T	DEL.L	CM	R	PHIC
-	1	Т	4	п	11	4	#	11	2	п	11	2		11	18.72	1.061	1.00	0.016	2121.	56995.	1.000	1.169	0.400	2	0.70
		В	4	Ħ	11	4	#	11	2	. #	11	2	п	11	18.72	1.061	1.00	0.044	1971.	50957.	1.000	1.176	0.400	2	0.70
:	2	Т	4	#	11	4	#	11	2	#	11	2	#	11	18.72	1.061	1.00	0.111	2282.	55032.	1.000	1.240	0.400	2	0.70
-	,	B	4	#	11		. #	11	2		11	2		11	18.72	1.061	1.00	0.000	2033	57744	1.000	1.198	0.926	2	0.70

FOOTING 1 DESIGN LOADS

p	G	LLI	D	WC	ES	С	S	P	MT	VT	ML	VL	P4	P3	P2	P1	MTF	VBF	VPF	LOAD
		LL	9	0.0		С	s	771.058	216.788	25.673	222.809	8.529	104.709	76.636	127.743	155.816	37.398	-0.191	15.474	MAX.P1
1	1	LL	9	0.0		C	S	1134.532	386.177	47.180	289.652	11.088	142.279	105.783	197.668	234.164	57.396	-0.249	22.798	MAX.MT
1	1	LL	9	0.0		C	S	1134.532	386.177	47.180	289.652	11.088	142.279	105.783	197.668	234.164	57.396	-0.249	22.798	MAX.VT
1	1	LL	6	0.0		С	S	1164.853	246.863	25.907	289.652	11.088	164.425	127.929	184.185	220.681	53.651	-0.249	23.413	MAX.VP
1	3	LL	6	3.2		С	S	1026.887	266.568	26.456	746.538	26.146	171.224	78.107	137.968	231.084	81.233	-0.249	20.614	MAX.ML
1	1	LL	9	0.0		C	S	1134.532	386.177	47.180	289.652	11.088	142.279	105.783	197.668	234.164	75.845	-0.249	22.798	MAX.VL
1	3	LL1	1	1.2		С	S	705.625	279.178	32.339	533.431	18.759	107.464	40.899	106.293	172.858	36.786	-0.191	14.147	MAX.P3

FOOTING 1 ANALYSIS/DESIGN RESULTS

FOOTING SIZE * BAR REINFORCEMENT STEEL * SECTION CAPACITIES *

B D T P1/PA AS NO.SIZE SPAC. PLACEMENT MT. VB VP DS FC

9.000 9.000 3.500 0.812 0.61 18 # 5 * 6.000 TOP TRAN 76.841 33.868 67.736 28.062 0.000

0.64 19 # 5 * 5.625 BOT.LONG 82.865 34.622 69.245 28.688 0.000

NUMBER OF PILES = 7 BP = 3.000 DP = 3.000

FOOTING 2 DESIGN LOADS

F	G	LLID	WC	ES	C	S	P	MT	VT	ML	VL	P4	P3	P2	P1	MTF	VBF	VPF	LOAD
2	4	LL13	0.0	S	C	S	819.955	521.628	44.796	222.809	8.529	80.714	52.640	165.709	193.783	47.944	-0.191	16.466	MAX.P1
2	4	LL13	0.0	S	C	S	1065.942	678.117	58.235	289.652	11.088	104.928	68.432	215.422	251.918	62.328	-0.249	21.406	MAX.MT
2	1	LL 3	0.0		C	S	1292.745	-67.253	-9.327	289.652	11.088	202.498	166.003	182.652	219.148	53.225	-0.249	26.008	MAX.VT
2	1	LL 3	0.0		C	S	1292.745	-67.253	-9.327	289.652	11.088	202.498	166.003	182.652	219.148	53.225	-0.249	26.008	MAX.VP
		LL 3	4.2		C	s	1132.094	48.700	2.681	746.619	26.149	211.348	118.222	127.902	221.029	87.498	-0.249	22.749	MAX.ML
2	1	LL 3	0.0		C	S	1292.745	-67.253	-9.327	289.652	11.088	202.498	166.003	182.652	219.148	85.262	-0.249	26.008	MAX.VL
2	4	LL13	0.0	s	С	s	819.955	521.628	44.796	222.809	8.529	80.714	52.640	165.709	193.783	47.944	-0.191	16.466	MAX.P3

FOOTING 2 ANALYSIS/DESIGN RESULTS

NUMBER OF PILES = 7 BP = 3.000 DP = 3.000

CALCULATION COVER SHEET

PROJEC [*]	Т		JOB NO.			CALC NO	D. S	HEET
I-75 / I-57	5 NORTHWEST CO	RRIDOR	NH000-0073-	03(242)		BR#31	1	
SUBJEC	Γ			DISC	IPLINE			
Reference	es for Design			STRU	JCTURAL			
				•				
CALC	CULATION STATUS	PRELIMINARY CC	NFIRMED	SUP	SEDED	VOIDE	D INCOM	/IPLETE
	DESIGNATION			_				
								X
		<u>-</u>			<u>-</u>			-
	COMPUTER	SCP MA	INFRAME	PC F	PROGRAM	1 VER	SION/RELEASE	E NO.
PR	OGRAM/TYPE		\bigcap	\cap \Box				
			\bigcirc	\cup	NON	E		
		YES NO						
Note 1: 0	Georgia Department o	of Transportation (GDOT) te	rminated Co	ntract Nu	ımber TOL	JRDPPI6007	72 for its conven	ience
	• '	er that contract and directed						
(a) These	e calculations were no	ot completed at the time of	GDOT's dire	ction and	the inform	nation contai	ned herein is no	t
	=	ed or checked. These calcu					-	
		he use of these calculation	-			calculations	s, without access	s to
		ard for their purpose, could						
		any information contained h				_	_	ork
1		information contained here		-	-	any such use	e.	
(a) GIP I	ias no responsibility f	or the use of this informatio	n not under i	is direct (control.			
Included	Reference Information	n·						
	y information	<u></u>						
	urvey Shots							
	Survey Shots							
Existing	Bridge Plans							
Existing	Bridge Maintenance	Reports						
Hydrauli	ic Information							
								<u> </u>
Α	As per GDOT's termin	ation for convenience direction	53	53	JCR			11/30/09
NO.	REASON	FOR REVISION	TOTAL	LAST	BY	CHECKED	APPROVED/	DATE
			NO. OF	SHEET	-		ACCEPTED	
			SHEETS	NO.				
		RECOF	RD OF REVIS	SIONS				

PROJECT: <u>I-75 / I-575 NORTHWEST CORRIDOR</u>

JOB NUMBER <u>NH000-0073-03(242)</u>

CALC NO. BR#31

SUBJECT: Roadway Information SHEET NO. BY: JCR DATE: 11/30/2009 SHEET REV.

Horizontal Alignment Review Report

Report Created: 9/18/2009 Time: 5:40pm

Project: I-75/I-575 Description: I-75/I-575 PPI

File Name: N:\TRA\255717\Drawings\Civil\Rdy\InRoads\I-75 I-575.alg

Last Revised: san49773 9/18/2009 5:39:37 PM

Input Grid Factor: 1.00000000

Note: All units in this report are in feet unless specified otherwise.

Alignment Name: I-75 NB CL

Length:

Tangent:

Alignment Description: I-75 NB CL corrected for topo

Ali	gnment Style	: MAIN_P_CONSTCL		
		Station	Northing	Easting
Element: Linear				
POR	3 (800+00.0591	1459076.3730	2175089.1100
P			1459808.7490	2174945.0930
Tange	ential Direction	: N 11°07'29.6349" W		
	gential Length			
lement: Linear				
P	1 (807+46.4608	1459808.7490	2174945.0930
P	1 () 833+19.8800	1462334.3070	2174451.0860
Tange	ential Direction	: N 11°04'02.9823" W		
Tan	gential Length	2573.4192		
lement: Linear				
P	1 () 833+19.8800	1462334.3070	2174451.0860
P	1 (837+55.3219	1462761.1592	2174365.0229
Tange	ential Direction	: N 11°23'57.4843" W		
Tan	gential Length	435.4419		
ement: Linear				
P	1 (837+55.3219	1462761.1592	2174365.0229
PC	(837+82.0505	1462787.3799	2174359.8368
Tange	ential Direction	: N 11°11'16.8430" W		
Tan	gential Length	26.7286		
lement: Circular				
PC	(837+82.0505	1462787.3799	2174359.8368
P	(844+76.9091	1463469.0332	2174225.0140
CC	()	1462034.5470	2170553.5732
PT	(1464061.5315	2173862.0069
	Radius	3880.0000		
	Delta		t	
Degree of C	urvature (Arc)	1°28'36.1033"		

1375.1395

694.8586

PROJECT:	NW Corridor
COUNTY:	COBB
BRIDGE:	31
DESCRIPTION:	I-75 over Noonday Creek NB

VERTICAL GRADE DATA FOR NEW ALIGNMENT, ADJUSTED FOR SURVEY DIFF.:

PVC =	832+93.13	PVI =	841+93.13	
PVI EL. =	970.6328	PVI EL. =	946.07	F
		VC Length (ft) =	1800	

850+93.13

ELEVATION COMPARISON, ADJUSTED FOR SURVEY DIFF.

BENT 1R LEFT SIDE	BENT 1R RIGHT SIDE
Geomath Rdy EL. = 958.835	Geomath Rdy EL. = 961.209
Survey EL. = 958.871	Survey EL. = 961.269
DIFFERENCE = -0.036	DIFFERENCE = -0.060
BENT 2R LEFT SIDE	BENT 2R RIGHT SIDE
Geomath Rdy EL. = 958.138	Geomath Rdy EL. = 960.562
Survey EL. = 958.064	Survey EL. = 956.363
DIFFERENCE = 0.074	DIFFERENCE = 4.199
BENT 3R LEFT SIDE Geomath Rdy EL. = 957.622 Survey EL. = 957.563 DIFFERENCE = 0.059	BENT 3R RIGHT SIDE Geomath Rdy EL. = 960.057 Survey EL. = 955.836 DIFFERENCE = 4.221
BENT 4R LEFT SIDE	BENT 4R RIGHT SIDE
Geomath Rdy EL. = 957.291	Geomath Rdy EL. = 959.680
Survey EL. = 957.290	Survey EL. = 959.705
DIFFERENCE = 0.001	DIFFERENCE = -0.025
	Mean EL. Difference = 0.002

Horizontal Alignment Review Report

Report Created: 9/18/2009 Time: 5:37pm

Project: I-75/I-575

Description: I-75/I-575 PPI

File Name: N:\TRA\255717\Drawings\Civil\Rdy\InRoads\I-75 I-575.alg

Last Revised: san49773 9/18/2009 5:36:07 PM

Input Grid Factor: 1.00000000 Note: All units in this report are in feet unless specified otherwise.

Alignment Name: I-75 Ramp A

Alignment Description: Big Shanty Road

Alignment Style: MAIN_P_SIDECL

		AIN_P_SIDECL	nt Style: M	Alignmer
Easting	Northing	Station	_	
				Element: Linear
2174505.2206	1461922.1084	29+01.8158	()	POB
2174319.8036	1462778.7364	37+78.2808	()	PC
		N 12°12'47.7283" W	Direction:	Tangential D
		876.4651	al Length:	Tangentia
BA				Element: Circular
2174319.8036	1462778.7364	37+78.2808	()	PC
2174226.0804	1463202.3255	42+12.1146	()	PI
2170581.6659	1461951.6368		()	CC
2174039.9521	1463594.2030	V46+42.2631	()	PCC
		√ 3828.5463	Radius:	
		12°55'47.4647" Left	Delta:	
		1°29'47.5489"	ure (Arc):	Degree of Curvatu
		863.9822	Length: Tangent: Chord:	
		433.8338		
		862.1501		
		24.3458	Ordinate:	Middle C
		24.5017	External:	
		N 12°28'34.4937" W	Direction:	Tangent D
		N 77°31'25.5062" E	Radial Direction:	
		N 1856'28.2261" W	Direction:	Chord D
		N 64°35'38.0417" E	Radial Direction:	
		N 25°24'21.9584" W	Direction:	Tangent D
				Element: Circular
2174049.3908	1463574.1814	46+42.2631	()	PCC
2173945.0405	1463810.3802	49+00.4856	()	PI
2170555.6547	1462030.6828		()	CC
2173809.8479	1464030.3844	51+57.9235	()	PT
		3819.5000	Radius:	
		7°44'07.2566" Left	Delta:	
		1'30'00.3090"	ire (Arc):	Degree of Curvatu
		515.6604	Length:	

PROJECT: <u>I-75 / I-575 NORTHWEST CORRIDOR</u>
JOB NUMBER NH000-0073-03(242)

CALC NO. BR#31

SUBJECT:Creek Survey ShotsSHEET NO.BY:JCRDATE:11/30/2009SHEET REV.

Greek Bank Survey From McWhorter I-75 over Noorday Greek RIGHT BR

>>>> Describe Points <<<< [Mon Aug 31 15:03:55 2009] SVXA32748 N 1463053.559400 E 2174369.033400 Z 933.618 DSB "TCB320 SVXA32735 N 1463026.704900 E 2174218.219200 Z 932.117 DSB "TCB320" SVXA32679 N 1463214.980000 E 2174099.136300 Z 939.168 DSR "TCB324" SVXA32960 N 1462787.434200 E 2174592.019000 Z 933.513 DSB "TCB324" SVXA32963 N 1462746.945300 E 2174641.740800 Z 932.183 DSR 'TCB324" SVXA32964 N 1462734.587400 E 2174675.934600 Z 932.682 "TCB324" DSB SVXA32967 N 1462725.322200 E 2174708.488800 Z 931.410 "TCB324" DSB SVXA32761 N 1463127.840800 E 2174497.627100 Z 932.431 "TCB325" SVXA32765 N 1463119.735100 E 2174512.712200 Z 932.590 DSB "TCB327" SVXA32673 N 1463358.422700 E 2173844.861000 Z 935.312 "TCB324" DSB SVXA32592 N 1463329.158300 E 2173759.027900 Z 936.600 "TCB313" DSB SVXA32787 N 1462933.780600 E 2174445.504400 Z 934.166 DSB "TCB320" SVXA32792 N 1462821.902300 E 2174460.882500 Z 935.245 "TCB320" DSB SVXA32617 N 1463156.530200 E 2173550.457300 Z 935.842 DSB "TCB316" SVXA32616 N 1463176.213100 E 2173594.620600 Z 935.827 DSB TCB316 SVXA32643 N 1463252.246500 E 2173362.067800 Z 936.563 "TCB313" DSB SVXA32634 N 1463246.322900 E 2173414.006600 Z 936.911 DSB "TCB313" SVXA32633 N 1463231.342400 E 2173462.331400 Z 937.280 DSB "TCB313" SVXA32624 N 1463206.012800 E 2173510.861900 Z 936.010 DSB "TCB313" SVXA32623 N 1463197.595300 E 2173547.754100 Z 936.423 DSB "TCB313" SVXA32612 N 1463207.326500 E 2173576.651200 Z 934.236 DSB "TCB313" SVXA32611 N 1463248.413000 E 2173620.218300 Z 936.245 DSB "TCB313" SVXA32602 N 1463276.140800 E 2173662.699200 Z 934.772 DSR "TCB313 SVXA32601 N 1463304.334700 E 2173708.638500 Z 935.228 DSB "TCB313" SVXA32591 N 1463341.367600 E 2173811.217500 Z 934.769 DSB "TCB313" / SVXA32674 N 1463362.192000 E 2173908.516900 Z 939.789 DSB TCB324" SVXA32675 N 1463356.243700 E 2173965.178200 Z 942.011 DSB "TCB324" SVXA32676 N 1463331.180800 E 2174022.625600 Z 941.961 DSB "TCB324 SVXA32677 N 1463297.367900 E 2174059.236100 Z 940.265 DSB "TCB324" SVXA32678 N 1463260.890100 E 2174087.328700 Z 939.718 DSB 'TCB324"

7	SVXA32721 N	1463195.766400	E	channel point 2174097.669600	S	all.tpr 933.270	DSB
8	"TCB324" SVXA32722 N	1463189.103000	E	2174094.562100	Z	932.515	DSB
9	"TCB324" SVXA32723 N	1463161.096900	E	2174112.734600	Z	933,052	DSB
10		1463145.672100	E	2174144.925500	Z	935.320	DSB
11	"TCB324" SVXA32725 N "TCB324"	1463129.614300	E	2174164.390100	Z	935.523	DSB
12	SVXA32726 N "TCB324"	1463096.153400	E	2174202.012400	Z	934.564	DSB
13		1463064.563200	E	2174239.641100	Z	932,907	DSB
14	SVXA32742 N "TCB324"	1463064.646000	E	2174272.286500	Z	933,991	DSB
15	SVXA32743 N "TCB324"	1463082.944300	E	2174310.402900	Z	933.241	DSB
16	SVXA32744 N "TCB324"	1463094.124600	E	2174357.508900	Z	932.970	DSB
17		1463101.453200	E	2174405.784900	Z	931.778	DSB
18	SVXA32754 N "TCB324"			2174448.948500			DSB
19	SVXA32762 N "TCB325"			2174472.175200			DSB
	"TCB324"			2174504.752100			DSB
51	"TCB324"			2174505.373600			DSB
72	"TCB324"			2174518.578800			DSB
2.	"TCB324"			2174519.792400			DSB
24	"TCB324"			2174495.861200			DSB
25	"TCB324"			2174477 . 862700			DSB
37	"TCB324"			2174486.248700			DSB
75	"TCB324"			2174508.038100			DSB
23	"TCB324"			2174520.850600			DSB
	"TCB324"			2174557.765200 2174588.767200			DSB
	"TCB324"			2173360.999700			DSB
	"BCB314"			2173415.247300			DSB
	"BCB314"			2173459.909200			DSB
	"BCB314"			2173506.664300			DSB
	"BCB314"			2173550.415300			DSB
	"BCB314" SVXA32613 N			2173581.747000			DSB
	"BCB314" SVXA32610 N	1463244.200400	E	2173626.634700	Z	929,900	DSB
	"BCB314" SVXA32603 N	1463272.023900	E	2173665 434700 Page		930.164	DSB

channel points all.tpr "BCB314" SVXA32600 N 1463298.596500 E 2173710.100200 Z 929.982 DSB "BCB314" 5VXA32593 N 1463320.971400 E 2173757.982700 Z 930.155 "BCB314" SVXA32590 N 1463334.819600 E 2173813.349400 Z 930.039 DSR "BCB314" SVXA32672 N 1463350.617600 E 2173848.394400 Z 929.801 DSB "BCB323" SVXA32684 N 1463341.173900 E 2173911.245700 Z 928.325 'BCB323" SVXA32685 N 1463332.702200 E 2173958.781600 Z 928.461 DSB "BCB323" SVXA32690 N 1463302.025100 E 2174020.492900 Z 928.418 DSB "BCB323" SVXA32691 N 1463264.963200 E 2174070.189700 Z 928.205 "BCB323" SVXA32696 N 1463210.184600 E 2174078.595100 Z 928.330 DSB "BCB323" SVXA32703 N 1463174.967400 E 2174101.175300 Z 928.485 DSB BCB323" SVXA32708 N 1463154.593900 E 2174117.593600 Z 928.650 DSB "BCB323" SVXA32714 N 1463112.034500 E 2174166.177400 Z 927.857 DSB "BCB323" SVXA32718 N 1463088.884200 E 2174197.662900 Z 927.681 DSB "BCB323 SVXA32730 N 1463058.526700 E 2174238.592600 Z 927.350 DSB "BCB323" SVXA32737 N 1463056.370400 E 2174276.292600 Z 927.175 DSB "BCB323" SVXA32738 N 1463075.538000 E 2174317.011700 Z 927.016 DSB "BCB323" SVXA32745 N 1463088.079900 E 2174358.227400 Z 927.211 DSB "BCB323" SVXA32749 N 1463098.169100 E 2174406.129200 Z 926.628 DSB "BCB323" SVXA32755 N 1463096.479500 E 2174449.096400 Z 927.142 DSB "BCB323" SVXA32760 N 1463072.444900 E 2174500.019800 Z 926.929 DSB "BCB323" SVXA32769 N 1463054.020000 E 2174501.299800 Z 922.753 DSB "BCB323" SVXA32858 N 1463019.322300 E 2174515.312800 Z 926.847 DSB "BCB323" SVXA32771 N 1462975.487700 E 2174515.848000 Z 926.250 DSB "BCB323" SVXA32772 N 1462946.637000 E 2174492.321500 Z 926.829 DSB "BCB323" SVXA32775 N 1462910.760500 E 2174473.325700 Z 926.928 DSB "BCB323" SVXA32776 N 1462886.869900 E 2174472.631400 Z 926.736 D5B "BCB323" SVXA32780 N 1462827.452200 E 2174496.422100 Z 927.122 DSB "BCB323" SVXA32781 N 1462803.047300 E 2174505.634300 Z 926.173 DSB "BCB323" SVXA32782 N 1462782.099100 E 2174555.347000 Z 927.350 "BCB323" DSB SVXA32961 N 1462778.285700 E 2174587.830000 Z 927.187 DSB "BCB323" SVXA32962 N 1462744.351000 E 2174638.742600 Z 926.980 DSB "BCB323"

			channel points		000
"BCB323"			2174674.667500 Z		DSB
SVXA32640 N "BCB315"		E	2173356.542300 z	930.455	DSB
SVXA32637 N "BCB315"	N 1463211.296400	E	2173405.111500 Z	930.374	DSB
SVXA32630 1 "BCB315"	N 1463194.635700	E	2173446.803200 z	930.770	DSB
SVXA32627 1	N 1463165.417500	E	2173490.558400 z	930.002	DSB
"BCB315" SVXA32620 "BCB315"	N 1463166.402800	E	2173550.077300 z	930.255	DSB
SVXA32615 "BCB315"	N 1463179.799000	E	2173593.384700 Z	929,993	DSB
SVXA32608 "BCB315"	N 1463219.782200	E	2173646.110900 Z	930.212	DSB
SVXA32605 "BCB315"	N 1463248.625800	E	2173683.374400 Z	930.174	DSB
SVXA32598 "BCB315"	N 1463274.786400	E	2173724.308500 z	930.137	DSB
SVXA32595 "BCB315"	N 1463296,657100	E	2173768.063200 z	930.200	DSB
SVXA32588 "BCB315"	N 1463313.887000	E	2173821.571600 z	934,516	DSB
SVXA32670 "BCB321"	N 1463328.378600	E	2173856.156400 Z	929.989	DSB
SVXA32682 "BCB321"	N 1463329.347700	E	2173910.075400 z	928.369	DSB
SVXA32687 "BCB321"	N 1463315.884500	E	2173959.074800 z	928.152	DSB
SVXA32688 "BCB321"	N 1463289.935000	E	2174012.149400 Z	928.207	DSB
SVXA32693 "BCB321"	N 1463251.320800	Ε	2174050.499600 Z	928.425	DSB
SVXA32694 "BCB321"	N 1463204.253000	E	2174061.675000 Z	928.274	DSB
SVXA32700 "BCB321"	N 1463162.719200	E	2174083.992900 z	928.670	DSB
SVXA32706 "BCB321"	N 1463142.033700	E	2174099.736800 Z	928.559	DSB
SVXA32712 "BCB321"	N 1463098.623500	E	2174157.627600 Z	928.335	DSB
SVXA32720 "BCB321"	N 1463073.820000	E	2174185.482000 Z	927.824	DSB
SVXA32733 "BCB321"	N 1463029.846700	E	2174220.107300 Z	927.574	DSB
SVXA32734 "BCB321"	N 1463030.069800	E	2174275.504400 Z	926.695	DSB
SVXA32741 "BCB321"	N 1463056.006300	E	2174316.035500 Z	927.378	DSB
SVXA32747 "BCB321"	N 1463072.331000	E	2174363.145600 Z	927.135	DSB
SVXA32752 "BCB321"	N 1463063.430700	E	2174407.423500 Z	928.801	DSB
SVXA32757 "BCB321"	N 1463076.515200		2174443.737000 Z		DSB
SVXA32758 "BCB321"	N 1463057.490300		2174482.790100 z		DSB
SVXA32785 "BCB321"	N 1462984.683300	E	2174471.553500 z	928.468	DSB
SVXA32786 "BCB321"	N 1462934.703300	E	2174455.075300 Z	926,615	DSB
SVXA32789	N 1462891.450500	E	2174443.729700 Z Page 4		DSB

channel points all.tpr "BCB321" SVXA32790 N 1462869.789800 E 2174448.469800 Z 929.051 DSB "BCB321" SVXA32793 N 1462822.307500 E 2174464.292900 Z 929.699 DSB BCB321" SVXA32902 N 1462786.237600 E 2174489.870700 Z 925.833 DSB "всв321" SVXA32903 N 1462745.356100 E 2174544.301500 Z 929.912 DSB "BCB321" SVXA32906 N 1462724.892700 E 2174610.958400 Z 926.141 D5B "BCB321" SVXA32908 N 1462700.823900 E 2174649.253100 Z 925.580 DSR "BCB321 SVXA32912 N 1462681.834300 E 2174702.077700 Z 926.935 "BCB321" DSB SVXA32639 N 1463209.416500 E 2173357.059100 Z 936.768 DSB 'TCB316" SVXA32638 N 1463208.419400 E 2173404.717100 Z 934.835 "TCB316" DSB SVXA32629 N 1463188.308900 E 2173444.760100 Z 935.571 DSB "TCB316" SVXA32628 N 1463160.738800 E 2173492.356900 Z 937.165 DSB 'TCB316" SVXA32607 N 1463216.739200 E 2173648.960300 Z 935.245 DSB 'TCB316" SVXA32606 N 1463246.301600 E 2173684.175700 Z 934.884 DSB "TCB316" SVXA32597 N 1463271.880300 E 2173724.965600 Z 934.051 "TCB316" DSB SVXA32596 N 1463294.066200 E 2173769.177500 Z 934.964 DSB "TCB316" SVXA32587 N 1463305.468700 E 2173823.837600 Z 936.845 DSB 'тсв316" SVXA32664 N 1463317.523100 E 2173859.440500 Z 935.127 DSB "TCB320" SVXA32665 N 1463319.670500 E 2173909.713300 Z 936.031 DSB "TCB320" SVXA32666 N 1463304.364200 E 2173958.275200 Z 936.614 DSB "TCB320 SVXA32667 N 1463277.420700 E 2174003.265700 Z 936.327 "TCB320" DSB SVXA32668 N 1463245.569900 E 2174036.756600 Z 935.164 DSB "TCB320" SVXA32669 N 1463198.565000 E 2174051.310000 Z 935.629 DSB 'TCB320" SVXA32699 N 1463155.169100 E 2174073.172200 Z 935.104 DSB "TCB320" SVXA32701 N 1463132.625500 E 2174092.312600 Z 935.297 DSB "TCB320" SVXA32704 N 1463132.924400 E 2174100.726400 Z 931.859 "TCB320" SVXA32709 N 1463094.527600 E 2174155.431000 Z 930.851 DSB "TCB320" 7 - SVXA32715 N 1463069.675100 E 2174181.190900 Z 929.178 DSB "TCB320 SVXA32716 N 1463063.801900 E 2174181.296200 Z 929.366 DSB "TCB320" SVXA32717 N 1463060.580300 E 2174180.789600 Z 932.105 DSB. "TCB320" SVXA32736 N 1463019.412000 E 2174275.254500 Z 932.960 DSB "TCB320" SVXA32740 N 1463033.949800 E 2174320.595300 Z 932.565 DSB "TCB320"

```
channel points all.tpr
1/2 - SVXA32751 N 1463055.809900 E 2174409.352700 Z 933.521
                                                                DSB
        "TCB320"
/7- SVXA32854 N 1463055.140300 E 2174428.639800 Z 933.374
                                                                DSB
        "TCB320"
// - SVXA32855 N 1463028.940900 E 2174456.518600 Z 934.076
                                                                DSB
        "TCB320"
/9 - SVXA32784 N 1462985.528300 E 2174465.382200 Z 934.268 "TCB320"
                                                                DSB
VXA32788 N 1462890.158600 E 2174440.550900 Z 936.283
                                                                DSB
        "TCB320"

∑
    SVXA32791 N 1462867.528600 E 2174445.779400 Z 936.837

                                                                DSB
        "тсв320"
      SVXA32901 N 1462782.264300 E 2174484.967800 Z 931.921 "TCB320"
                                                                DSB
      SVXA32904 N 1462743.808700 E 2174542.149900 Z 933.120
                                                                DSB
        "TCB320"
      SVXA32905 N 1462716.297700 E 2174608.194500 Z 933.914
                                                                DSB
        "TCB320"
      SVXA32910 N 1462695.790600 E 2174648.638700 Z 933.577 "TCB320"
                                                                DSB
      SVXA32911 N 1462678.483400 E 2174702.306700 Z 932.487
                                                                DSB
        "TCB320"
      SVXA32766 N 1463090.207700 E 2174485.536300 Z 932.026
                                                                DSB
        "TCB327"
      >>>> End of Describe Points <<<<
```

PROJECT: <u>I-75 / I-575 NORTHWEST CORRIDOR</u>

JOB NUMBER <u>NH000-0073-03(242)</u>

CALC NO. BR#31

SUBJECT:Bridge Survey ShotsSHEET NO.BY:JCRDATE:11/30/2009SHEET REV.

-75 over Noonday Ck (Existing Right Bridge) urvey Shots at Bents	
ENT LEFT SIDE	TBAS
VXB51112 N 1462935.861700 E 2174315.204100 Z 958.871 ENT 1 RIGHT SIDE	TBRDG
VXA45825 N 1462949.622400 E 2174372.751400 Z 961.067	TBAS
VXB51122 N 1462949.738500 E 2174372.926800 Z 961.269	TBRDG
ENT 2 LEFT SIDE VXA45822 N 1463014.083600 E 2174294.793800 Z 954.472	TBRDG
"ZULST715" VXA45811 N 1463013.678600 E 2174295.434300 Z 958.064	TBRDG
"ZEJ707" ENT 2 RIGHT SIDE	
VXA45899 N 1463027.823400 E 2174354.142900 Z 956.363 "ZUPIER731"	TCOLE
VXA45898 N 1463027.834800 E 2174354.278300 Z 953.102 "ZUPIER731"	TCOLE
ENT 3 LEFT SIDE	
VXA45809 N 1463091.105900 E 2174274.095300 Z 957.563	TBRDG
VXA45823 N 1463091.098100 E 2174273.805600 Z 953.933 "ZULST715"	TBRDG
ENT 3 RIGHT SIDE VXA45869 N 1463106.374800 E 2174332.901400 Z 952.527 "ZUPIER723"	TCOLE
VXA45870 N 1463106.346800 E 2174332.871300 Z 955.836 "ZUPIER723"	TCOLE
ENT 4 LEFT SIDE	
VXA45808 N 1463168.339900 E 2174251.405600 Z 957.294 "ZAS705"	TBAS
VXB51165 N 1463168.645000 E 2174251.223400 Z 957.290 ENT 4 RIGHT SIDE	TBRDG
VXA45834 N 1463185.737600 E 2174308.128700 Z 959.890	TBAS
VXB51186 N 1463186.109500 E 2174308.328100 Z 959.705	TBRDG

Shiptor Throat

PROJECT: <u>I-75 / I-575 NORTHWEST CORRIDOR</u>

JOB NUMBER <u>NH000-0073-03(242)</u>

CALC NO. BR#31

SUBJECT:Existing Bridge PlansSHEET NO.BY:JCRDATE:11/30/2009SHEET REV.

22"

8.5

11

17

35,

_11

.11

6.8

#10. ROAD | MATE | MOS. AND | MOC. AL | SHEET | TOTAL | NO. | MOC. | MOC 20.0000 LE BEAM A S -E BEAM C -E BEAM D - E BEAM E - E BEAM F 17. 8.184 19, 12.99 TE BEAM G /7.307# 3.2500-3.0725 DO 8. 19.3074 3.2500 PE BEAM H - B.F.R.R. ABUT. I SPAN 2 -E BENT 2 SPAY 3 -E DENT 3 BEGIN BRIDGE B.R.R.A. STA. 809130,0 S.B.L. BEGIN BRIDGE B.P.R.A. STA. 806135,0 W.B.L. END BRIDGE BURNE STA BOSTOD S BL END BRIDGE BURNE STA BOSTOSO NOL SBL NOTE: SEL SOBER & AND NOL SURVEY & 1-30 CURVE LT. * RADIAL DIMENSIONS * * MERSURED TO TANGENT OF THE CURVE L SURVEY E ALL BENTS ARE BADIAL -- A.E.P.A. BT. 1 -EF.RR. BT. 4 ALL BEAMS WITHIN A SPAN ARE PARALLEL. 20,4226 LE BOMM J 26.6000 20.577 \$ 20.0870 00 2,4106- 20.607 3,2500 20.6007 3,2500 -DO 3,46/8-E OGAM H 20.6897 DS DO - E BEAM L - E BEAM M 20.9567 00 -E BEAM N 21.0457 E BEAM P 21,2237 21.4018 20,0000 21.4018 -E BEAM S 21.5798 20.0000 SPAN 1 SPAN 2 SPAN 3 NBL NOTE: Q. BS. 24:00 MERSURED BETWEEN E BEAM AND B.E.R. OR E BENT, AT ALL BEAMS LT. AND RIGHT BRIDGE, BRIDGE NO. 1 LT. & RT. DEPARTMENT OF TRANSPORTATION HIGHWAY DIVISION - BRIDGE DESIGN BEAM CHORD LAYOUT I-75 OVER NOONDAY CREEK COBB CO. I-75-3(90)239 CT. 5 SCALE: 1'=10'-0" AUG. 1974 REVIEWED LAP

5:

THE PARTY OF THE PROPERTY OF THE PARTY OF TH

The state of the s

.11

22

" 6.8

8.5

17"

11"

17"

11"

.11

17″

8.5

11"

5:

11

11 .

3.8

18CATION NO. OF MARK LENGTH NO. TV AG B C D E F H J K N OF LOCATION OF LOCATIO 403 3-10 126 31 4 4 0- 9 1- 1 7/8 1- 1 7/4 1001 34-9 4 3 501 34- 0 375 1 11-11 1/4 1- 0 1002 59-2 2 1 1003 3-0 4 1 Side 14- 7 16 1 5044 59- 7 16 1 403 3-10 126 31 505 0-3 143 14 0-10 1-3 1/6 7-0 1-0 0-3 1001 34- 0 0 1 32- 6 1/2 2- 6 5028 27-10 197 1 12(2 5)-2 4 1 100 - 1-0 - 1 504G, 41-1 16 1 PAN THE LEFT 1 5044 41-8 to 1 ACLA VERY THE I 403 3-10 120 11 1132 50-2" 4 1 5174 H- 4 192 1 1007 1-0 4 1 5124 27-10 197 1 . 5040 40- 0 16 E 1032 | 56- 2 6 1 403 3-10 63 11 5021 36- 4 192 1 60% 14-10 165 1 521 12-6 7 1 50 a) 10-6 to 1 404K 4x= 2 16 1 405 10 1 147 14 1 1 4-4 4 4 1 . m. 2 1 22 1 1 14 15 1 41.1 BRIDGE NO. / LT. É RT. 416 41 46 11 STATE HIGHWAY DEPARTMENT OF GEORGIA -1 to -10-25 to 4 tot 1 BAR REINFORCEMENT STEEL SH. NO. 1 I-75 OVER NOONDAY CREEK 1 4 Carp 1 1 COBB COUNTY ** ** * 1 1 I-75-3(40)284 0.5 2 - - - 1 - 1 - 1 NO SLALE SEPT, 1974

--- 55.

11

3.8

22 | CONTROL | CONT | TO, SOM | STORY | TO, SO | STORY & SO | TOX | SON | 75 33 76 457 27-1 1 34 6 20-10 3-0 2-0 3-0 459 3-6 1 8 . 2-6 0-6 0-6 755 7-0 7 9 2 6-3 460 5-0 21 6 2-0 2-6 0-0 0-6 83 7 756 7-4 6 9 2 6-7 1461 NARY 2 6 2-6 VARIES 0-0 0-6 103 7 757 7-7 1 9 2 6-10 662 7-6 3 6 7 2-0 5-0 70-0 0-6 63 7 758 9-8 7 9-2 8-11 463 5- 0 36 6 2- 0 2- 6 0- 0 0- 6 : 83 7 759 10-0 7 9 2 9-3 464 5-9 1 6 2-9 2-6 0-0 0-6 +--+93-1-4-760 12-0 3 1 465 6-6 5 6 2-0 4-0 0-0 5-6 -1------761 4-9 3 1 446 6 4 14 1 742 11-16 20 1 467 4-0 1 8 3-0 0-6 0-6 763 4-9 17 1 400 44-4 3 34 6 21-0 2-6 20-0 2-0 764 6-0 4 1 ----469 43-10 1 34 6 21-0 2-0 20-0 2-0 765 VARY 5 1 .11. +20 4-10" 24 4 9-10" 1-0" 766 13-5 5 3 11-5 2-6 5638 34-7 12 3 32-6 1/2 2-0 . 5608 35-1 12 3 33-0 1/2 2-0 851 VARY 12 1 T 561 - 6-10 104 1 6.8 852 8- 6 11 5 6- 6 1-10 562 5-2 24 1 053 5-1 12 5 3-3 1-10 563 5-8 10 2 2-8 1-6 1-6 564 9-8 34 25 4 4 2-8 1-8 950 9-0 21 1 5654 30-9 2 3 24-9 2-0 5658 31-3 4 3 29-3 2-0 566 VARY 20 3 VARIES 2- 0 1056 7-4 7 9 2 6-3 567 VARY 3 3 VARIES 2-,0 1057 7-11 2 9 2 6-10 568 VARY 24 1 1050 | 8-2 | 2 9 2 7-1 569 10-0 2 3 8-8 2-0 1059 9-1 1 9 2 8-0 570 34-7 2 48 0-0 1-9 28-9 1/2 0-0 0-0 1060 B-10 1 9 2 7-9 571 - 5- 2 24 1 1061 9-4 2 9 2 8-3 272 8- 0 3 34 46 4- 0 0- 0 2- 0 2- 0 573 58-10 2 3 36-10 2- 0 , 574 41- 6 3 3 39- 6 2- 0 1042 10-2 1 9 2 9-1 1063 11-1 2 9 2 10-0 1004 7- 4 7 - 9 2 - 6- 3 575 11-0 18 14 2-6 2-0 2-3 2-0 2-3 576 9-7 8 48 3-3 1/2 2-3 0-0 2-0 2-0 0-0 0-0 577 19-6 2 3 17-6 2-0 576 38-4 6 3 36-4 2-0 1065 11- 1 1 9 2 10- 0 1067 12-0 6 1 579 19-10 1 3 17-9 1/2 2-0 456 10- 5 72 25 4 4 2- 5 . 2- 5 5.80 YERY 22 1 " 61 VASY 17 1 553 VARY 14 25 4 4 VARIES 2- 8 1 8 a-a 5ac 555 13- + 92 25 + 4 3-11 2- 3 356 14-2 16 25 4 4 3-11 2- 8 " - - - 11 14 0 18-0 2-0 70-0 2-0 557 31- 9 8 1 767 37-4 17 54 0 25-7 4-0 2-3 2-0 >+0 2+- + 13 34 0 41-1 3-0 4-0 3-0 751 4- 6 31 10 2 2 7- 0 107 10-2 54 1 351 0-3 2 1 -149 5-3 12 3 1-6 2-9 952 5-6 1 1 590 WAY 1" 1 953 10-6 16 10 2 2 8-6 191 -451 22 1 5% (-11 + 19) > 5-7 1-6 1/2 1-6 1/2 1052 11-2 8 10 2 2 4-0 we seem meaning to go a ! 197 7- 0 2 0 4- 3 5/4 1- 6 0- 0 1- 6 BRIDGE NO 1 LT E AT. 170 Y-1 1 50 4 5-0 1-4 2-4 0-5 0-4 0-9 11-1A 22-9 2 9 2 21-7 STATE HIGHWAY DEPARTMENT OF GEORGIA 11516 45-6 2 9 21 44-4 BRIDGE DIVISION 1152 16- 8 4 9 2 17- 5 1/2 196 4-5 9 10 3 + 1-4 1-6 1/2 1-6 1/2 BAR BEINFORCEMENT STEEL SH. NO. 2 1154 11-6 4 . 1 I-75 OVER NOONDAY CREEK 1155 9-0 4 1 1 652 6-0 14 1 COBB CO. I-75-3(46)269 CT. 5 1157 17-6 2 1 NO :CALE SEPT. 1974 BRIDGE SHIET 22"

55... NO. MARK LENGTH NO. T DARK FT. IN. PT. IN. FT. LOCATION ANALY FT. (N. PECCH FT. (N. FT. IN. FT 1160 11-0 2 1 453 4-5 6 25 11624 33-0 2 24 26-6 6-6 3/8 0-0 1-0 0-0 454 1-8 6 1 11020 23-0 2 20 20-0 6-0 3/0 0-0 1-0 10-0 551 9-8 32 1 1 11055 11-8 0 10 5 5 0-0 1104 14-3 4 1 552 | 6-8 44 1 11514 22-4-2 1166A : 15- 4 12 - 1 11518 49- 8 -2 -6 -----11674 16- 3 12 1 . 11919 ; 51-,7 .. (E.1-L.1-1 11081 13-5 IS I 1162A 31-0 2 24 ::: THE THE S. IS . 111e28 33- 0 2 24 MNI A LIFE 1105 7-8 48 9 450 11-5 70 25 4 4 2-6 2-6 1170 19-2 4 4 4 ---4 553 WARE 14 25 4 4 WARIES 2-8 .11 554 VALT 14 25 4 4 VARIES 2-11 555 13- 4 92 25 1172 12- 3 4 1 557 31-9 8 1 35# 14-2 16 25 ---1175 4 4 4 7 ----556 14-7 88 25 4 4 3-11 2- 4 1/2 1174 22- 0 2 1 559 14- e 16 25 4 4 3-11 Z-11 .. 6.8 1175 20-0 2 1 1170 15-0 3 1 ... 4. 1. 10 5.5 1-3. 1 752 8-3 11 10 2 2 6-9 1177 12-6-2-6 1178 10-6 2 1 952 5-6 2 1 991 6- 3 2 1 1179 19-3 4 1 954 10-6 16 10 2 2 8-6 1180 14-3 4 1 11818 22-1 16 1 1182 19- 9 48 1 1053 10-11 8 10 2 2 8- 9 11838 22-11 16 1 11518 - 45- 6 2 9 *51 6-9 31 32 11518 45-6 2 9 152 V- 5 58 25 1162A 33- 0 - 2 24 1152 10-8 4 9 11628 33- 0 2 24 454 1-8 8 1 1165 7-6 48 9 1154 11-6 4 1 1170 19- 2 4 9 2 17-11 1/2 1155 . 9- 0 4 1 , 551 | 9- 6 32 1 4 1171 | 16- 5 4 9 2 15- 2 1/2 1156 22-0 : 2 1 1172 . 12- 3 4 1 1157 17-6 2 1 1173 9-6 4 1 1158 - 14- 0 2 1 1174 22-0 2 1 1159 12-6 2 1 11/5 20-0 2 1 1162A 33- 0 2 24 11/7 12- 0 Z 1 1174 10-0 2 1 1181A 12-2 10 1 1102 15- 9 50 1 11e70 15-1 12 1 450 4-5 4 25 4 6 2-4 1-6 451 - 5 0 25 5 5 2- 2 2- 2 BRIDGE NO. I LT. & RT. -27 31-9 8 1 STATE HIGHWAY DEPARTMENT OF GEORGIA 558 13-7 68 25 BAR REINFORCEMENT STEEL SH. NO. 3 I-75 OVER NOONDAY CREEK COBB CO. I-75-3(40) CT. 5 NO LEALE SEPT. 1974

CALCULATION SHEET

PROJECT: <u>I-75 / I-575 NORTHWEST CORRIDOR</u>
JOB NUMBER <u>NH000-0073-03(242)</u>

CALC NO. BR#31

SUBJECT:Bridge Maintenance ReportsSHEET NO.BY:JCRDATE:11/30/2009SHEET REV.

BRIDGE INVENTORY DATA LISTING GEOF A DEPARTMENT OF TRANSPORTATION

20 Notice of Date State of Children (Carried) 10 Highway System. 1 No. 200077 22 Expansion Idual Type: 15 Systems 11 No. 20007 12 Expansion Idual Type: 15 Systems 12 No. 20007 13 Pages Location: 15 Systems 12 No. 20007 13 Pages Location: 15 Systems 12 No. 20007 14 Pages Location: 15 No. 20007 15 15 No	Location & Geography					Signs	Signs & Attachments			
State	* Structure I.D.No:				_				34	
Control Cont	200 Bridge Information				11	77		ype:	0	
c. 0.0 10f Federal Lands Highway: 0 24.9 Purpet Location: 3.1 cd. = 1.5f (NBL) 1.5f (NBL) 2.06 School Back Rouse: 0.000.00 2.38 Curle: Height: 1.30 cd. = 1.5f (NBL) 2.5 MIE OF KENNESAW 2.17 Benchmark Elevation: 0.000.00 2.38 Curle: 0.000 cd. = 2.5 MIE OF KENNESAW 1.9 Byspass Logdit: 0.1 0.000.00 2.37 Curle: 0.000 sp. Freq; 0.0 Date: Q2011/901 1.2 Date: Quality Solid So	* 6A Feature Int:				I No.: 00007	24			_	
trained: SR00401 1.25 ME COF KENNESAW 2.18 Datum: Elevation: 0000.00 2.26 School Bas Rouce: 0.000.00 2.27 ME COF KENNESAW 2.27 Reachante Elevation: 0000.00 2.28 School Bas Rouce: 0.000.00 2.29 Inchest: 0.000 0.000.000 2.20 Type Of Date: 0.001/1901 2.20 Type Of Date: 0.001/1901 2.21 Date: 0.000 0.000.000/1901 2.22 Overe: 0.000 0.000.000/1901 2.23 ME CORPUS Significance: 0.000 0.000 2.24 Reachant Higher: 0.000 2.25 Congressional District: 1.1 2.24 Reachant Higher: 0.000 2.25 Congressional District: 1.2 2.26 Congressional District: 1.2 2.27 Reachant Flance: 0.000 2.28 Reachant Flance: 0.000 2.29 Reachant Flance: 0.000 2.20 Type of Paint: 1.2 2.24 Reachant Biggin: 0.000 2.25 Plance Congressional District: 1.2 2.26 Manifel Rose: 0.000 2.27 Type of Paint: 1.2 2.28 Reachant Flance: 0.000 2.29 Type of Paint: 1.2 2.20 Manifel Rose: 0.000 2.29 Type Bidge: 0.0000 2.20 Type of Paint: 1.2 2.20 Minitals: JMC	* 6B Critical Bridge:	0	10.		0	24			~	
1-35 (NBL) 1-35 (NBL) 2-36 School Bits Route: 1-36 (NBL) 1-36 (NBL) 1-35 (NBL) 1-3	* 7A Route Number Carried:				_		Height			2.10
2.5 MIE OF KENNESAW 217 Benchmark Elevation: 0000 00 238 Curb: condition 2.009 2.8 Date: 4088/2009 • 21 Offs: Length: 0 23 Curb: 0 op Freq; 0. O. Date: 0.2011/901 • 2.0 Tolls: Length: 0 1 24.0 Median Barrier Rail: 0 op Freq; 0. O. Date: 0.2011/901 • 2.0 Tolls: Length: 0 1 24.1 Bridge Median Height: 0 op One 0.0000 3.1 Hots/end Significance: 0 1 24.1 Bridge Median Height: 0 ate (O.U): 1 2.0 Congressional District: 11 * 2.2 A Median Barrier Rail: 0 1	* 7B Facility Carried:	I-75 (NBL)	200		0		Wideh			1 30
218 Datum: 2009 218 Datum: 0 0 218 Datum: 0 0 218 Datum: 0 0 218 Datum: 0 0 0 218 Datum: 0 0 0 218 Datum: 0 0 0 0 218 Datum: 0 0 0 0 0 218 Datum: 0 0 0 0 0 0 0 0 0 0	* 9 Location:	2.5 MI E OF KENNESAW	21,		0000000		widin			00.1
2007 2007	2 DOT District:	7	213	-	0	23				
αρ μεταρη (OLD): 1 Date (0.01/1901) * 20 Toll: 3 Toll: * 20 Toll: 3 Toll: * 20 Maction Barrier Rail: 0 περ Freq; 00 Date: (0.01/1901) * 21 Maintenance: 61 24 Heige Median Height: 9 περ Freq; 00 Date: (0.01/1901) * 31 Design Load: 6 4 24 Midth: πε (0.01): 1 * 31 Design Load: 6 4 2 4	207 Year Photo:				10	23				
PFreq. 00 Date: 02/01/1901 1 Design Load: 01 Date: 02/01/1901 2 10 Maintenance: 01 Date: 02/01/1901 2 10 Design Load: 05 Date: 02/01/1901 3 7 Historical Significance: 5			2		3	*		11:0	0	
1		Date: 02/01/1901			01	7		alli.	>	
αρ Feq.; 0.0 Date::02/01/1901 31 Design Load: 6 Width: Width: 31 Hostign Load: 6 Width: 32 Historial Significance: 5 73 Historial Significance: 5 73 Historial Significance: 5 73 Historial Significance: 73 Hours: 74 Hours:		Date: 02/01/1901			01	24		eight:		0.00
1		Date: 02/01/1901			9		W	idth:		0.00
1		000000	3		5					
1	* 5 Inventory Route (O/U):	1	200		11			Rear:	3	
106 Year Reconstructed: 0000 1	Type:	-	2		1975			Fwrd:	2	
94-91-2600 MMS Prefix: SR 33 Bridge Median: 1 Fwrd: Fwrd: 34-01-2600 MMS Prefix: SR 35 Structure Flaned: 0 224 Retaining Wall: 24-34-2010 MMS Suffix: 00 MP: 270.25 38 Navigation Control: 0 224 Retaining Wall: 24-34-2010 MMS Suffix: 00 MP: 270.25 38 Navigation Control: 0 233 Pactaining Wall: 25 Network: 1 * 42 Type of Paint: 267 Waring Sign: 9 Network: 1 * 42 Type of Service on: 1 234 Delineator: 1 Network: 1 * 42 Type of Service on: 1 234 Briting Sign: Network: 1 * 42 Type of Service on: 1 235 Hazard Boards: Network: 1 * 42 Type of Service on: 234 Utilities Gas: Inter: 8 * 43 Structure Type Main: 302 Art Structure Type All Structure Type All Structure T	Designation:	-	100		0000		Oppo Dir	Rear	0	
15 244 Approach Slab: 15 244 Approach Slab: 15 244 Approach Slab: 244 Approach Slab: 244 Approach Slab: 244 Approach Slab: 245	Number:	00075	60		1			Fwrd:	0	
34-01.2600 MMS Prefix: SR 35 Structure Flared: 0 224 Retaining Wall: 84-34.2010 MMS Suffix: 00 MP: 270.25 38 Navigation Control: 0 224 Retaining Wall: 213 Special Steel Design: 0 267 Type of Paint: 233 Posted Speed Limit: 3 1 4 Type of Paint: 5 234 Marning Sign: 3 1 4 Type of Paint: 5 234 Delineator: 3 1 4 Type of Paint: 5 235 Hazard Boards: 3 5 1 Anning Sign: 200 Anning Sign: 235 Hazard Boards: 3 4 Anning Sign: 3 23 Utilities Gas: 43 Utilities Gas: 4 5 4 Structure Type Main: 3 22 Autilities Gas: 44 5 4 Structure Type Main: 3 22 Litighting Street: 6 1 1 Vert:	Direction:	0	60		15	24				
84-34_2010 MMS Suffix: 00 MP: 270.25 38 Navigation Control: 0 233 Posted Speed Limit: 213 Special Steel Design: 0 267 Type of Paint: 3 234 Marning Sign: 1 1 4 Type of Paint: 5 234 Delineator: 1 1 4 Type of Paint: 5 234 Delineator: 1 1 4 Type of Paint: 5 234 Delineator: 1 1 1 1 1 237 Utilities Gas: R votation: 0 0 0 0 0 3 1		MMS Prefix: SR	60		0	22			, ,	
13 Special Steel Design: 0 233 Posted Speed Limit: 267 Type of Paint: 0000000000000 267 Type of Paint: 3 234 Delineator: 3 235 Hazard Boards: 3 235 Hazard Boards		MP:	65		0	77			0	
1		00	21.		0	23		ii:	9	
1						23			0	
1				Type o	0	23			0	
y Network: 1 y Network: 1 y Network: 1 y Noute: 671040100 y Route: 671040100 203 Type Bridge: 0-0-M-O 204 Type Bridge: 0-0-M-O 205 Pile Encasement: 3 ture: R * 43 Structure Type Main: 3 45 No. Spans Main: 003 44 Structure Type Appr: 0 000 247 Lighting Street: 226 Bridge Curve Horz: 1 Vert: 0 Naviagtion: 111 Pier Protection: 0 Rearing Surface Type: 1 107 Deck Structure Type: 1 108 Wearing Surface Type: 1 F 0	* 100 STRAHNET: 1					2.6			0	
y Route: 671040100 214 Movable Bridge: 0 0 237 Utilities Gas: Route: 0 203 Type Bridge: 0 0 M ture: R 43 Structure Type Main: 3 02 Ele radific: 1 45 No. Spans Main: 0 03 Telephone: ry Mile Post: 012.62 44 Structure Type Appr: 0 000 247 Lighting Street: ea: 09 Initials: JMC 45 No. Spans Appr: 0 000 247 Lighting Street: tial: sgm 11 Pier Protection: 0 Naviagtion: Acrial: 107 Deck Structure Type: 1 Nearing Surface Type: 1 Acrial: 107 Deck Structure Type: 1 * 248 County Continuity No.: Rt 0 Perial: Perial:	12 Base Highway Network:	_			9	4			>	
Route: 0 00-M-O W Intre: R 43 Structure Type Main: 3 02 Ele Fraffic: 1 45 No. Spans Main: 003 Structure Type Main: Structure Type: Noverial: Noverial: Acrial: Acrial: 107 Deck Structure Type: 1 Novering Surface Type: 1 * 248 County Continuity No.: R 0 Processed Main: 0 Processed Main: Novering Surface Type: 1 Processed Main: Novering Main:	13A LRS Inventory Route:	671040100	21		0	23			00	
ture: R	13B Sub Inventory Route:	0	20.		0-W-0-0		H		00	
Telephone: 3 02 Telephone: 45 No. Spans Main: 003 Stancture Type Main: 003 Stancture Type Appr. 0 000 Stancture Type	* 101 Parallel Structure	> 2	25		3		Ele		22	
traine: 14 Structure Type Appr: 15 of 24 Structure Type Appr: 16 No. Spans Appr: 17 Mile Post: 18 Sgm 19 Initials: JMC 19 Initials: JMC 19 Express Appr: 10 Express Appr: 10 Fire Protection: 10 Deck Structure Type: 10 Wearing Surface Type: 10 Wearing Surface Type: 11 Fire Protection: 10 Wearing Surface Type: 12 Fighting Street: 13 Aerial: 14 Structure Type Appr: 15 Aerial: 16 Wearing Surface Type: 16 Fighting Street: 17 Cert: 18 Aerial: 19 Aerial: 19 Fighting Street: 10 Aerial: 10 Fighting Street: 10 Aerial: 10 Fighting Street: 11 Fighting Street: 12 Aerial: 13 Aerial: 14 Structure Type Appr: 15 Aerial: 16 Fighting Street: 16 Fighting Street: 17 Fighting Street: 18 Aerial: 19 Fighting Street: 10 Fighting Street: 10 Fighting Street: 11 Fighting Street: 12 Fighting Street: 13 Fighting Street: 14 Structure Type: 15 Fighting Street: 16 Fighting Street: 17 Fighting Street: 18 Fighting Street: 19 Fighting Street: 10 Fighting Street: 11 Fighting Street: 11 Fighting Street: 12 Fighting Street: 13 Fighting Street: 14 Fighting Street: 15 Fighting Street: 16 Fighting Street: 17 Fighting Street: 18 Fighting Street: 19 Fighting Street: 10 Fighting Street: 11 Fighting Street: 11 Fighting Street: 12 Fighting Street: 13 Fighting Street: 14 Fighting Street: 14 Fighting Street: 15 Fighting Street: 16 Fighting Street: 16 Fighting Street: 17 Fighting Street: 18 Fig	* 103 Principle Comment				3 02		Tolonhone		00	
ry Mile Post: 012.62 44 Structure Type Appr: 0 00	102 Direction of Iraine:	1	4		003		reichione.		000	
ea: 09 Initials: JMC 46 No. Spans Appr: 0000 247 Lighting Street: 226 Bridge Curve Horz: 1 Vert: 0 Naviagtion: 111 Pier Protection: 0 Aerial: 107 Deck Structure Type: 1 * 248 County Continuity No.: 108 Wearing Surface Type: 1 * 248 County Continuity No.: 109 F 0	* 264 Road Inventory Mile Post:	012.62	4		00 0		ž		3	
tial: sgm 226 Bridge Curve Horz: 1 Vert: 0 Naviagtion: 111 Pier Protection: 0 Aerial: 107 Deck Structure Type: 1		Initials: JMC	4			24			0	
111 Pier Protection: 0 107 Deck Structure Type: 1 108 Wearing Surface Type: 1 109 Mt 0 F 0			22		1 Vert: 0		Naviagtion		0	
107 Deck Structure Type: 1 108 Wearing Surface Type: 1 Mt 0 F 0			=		0		Aerial		0	
067-00401D-270.25N * 248 County Continuity No.: Mt 0 F 0			10		1					
F 0		1D-270.25N	10	Wearing Surface Ty	1 0			y No.:	00	
				1	0					

BRIDGE INVENTORY DATA LISTING GEOF A DEPARTMENT OF TRANSPORTATION

Project No. 1.75 4 (#) 234 CT. 1.5 1 (#) 234 CT. 2.5 1 (#)	Programming Data		Measurements	Ratings	
Control Cont		40) 284 CT.5	144160	65 Inventory Rating Method:	-
ε. 00000000000000000 28 Lance On: 0.0 Under: 0.0 66 Investion? Type: 2 Ratings 58 (200000) 8 Raings 58 (200000) 9 Raings 58 (2000000) 9 Raings 58 (200000) 9 Raings 58 (2000000) 9 Raings 58 (2000000) 9 Raings 58 (20000000) 9 Raings 58 (200000000) 9 Raings 58 (200000000000000000) 9 Raings 58 (2000000000000000000000000000000000000		4	144100 Ical.	63 Inventory Rating Method:	-
March Marc		0000000000000000000	03 11-1-1		
0000000 18 Max. Spin Length: 0245 19 Holdrifted: 21 0	250 Approval Status:	0000	09 Under:	2	
1970 1970		00000000	oo Onder.		
18		02/01/1901	7000	Modified	
17 17 17 18 18 19 19 19 19 19 19		00000	Br Rudy Width:		
17 17 18 18 18 19 19 19 19 19			Dack Width:	33	
Cook: \$ 0 Confession Vigids: 0.000 Confession Vigids Cook: \$ 0 Confession Vigids Cook: \$ 0 Confession Vigids Cook: \$ 0 Confession Cook: \$ 0 Cook: \$ Cook		8.0	Tot Hory Cl-	40	
1		8.0	Curb/Sdewlk Width: 0.00/	37	
216240 Year. 2027 Real Li. 14.00 Type: 1 Ri: 10.00 67 Structural Evaluation: 37		8.0	Approach Rdwy Width:	yback:	
18 18 19 19 18 19 19		000000			
216240 Year: 2027 Fwed Lt. 14.00 Type: 1 Rt. 1000 58 Deek Condition: 7 7 7 7 7 7 7 7 7 7	97 Imp. Year:		14.00 Type: 1 B+:		
Same Rearray (Same) Pavement Width: Same Rearray (Same) Same Rearray (Same Rearray (Same) Same Rearray (Same Rearray (Same) Same Rearray (Same	114 Future ADT:		14.00 Type: 1 Rt:	67 Structural Evaluation: 7	
Rear. 36.00 Type: 1			Pavement Width:	58 Deck Condition: 7	
Pkvrd: 36.00 Type: 1 Cold Substructure Condition: 7 Cold Substructure Condition: 7 Cold Substructure Condition: 7 Cold Substructure Condition: 8 Cold Substructure Condition: 8 Cold Substructure Condition: 1 Cold Substructure Condition: 2 Cold Substructure Condition: 3 Cold Substructure Condition: 4 Cold Substructure Condition: 5 Cold Substructure Cold Substructure Condition: 5 Cold Substructure Cold Substr			00.9		
State Stat			36.00		
Safety Features Br. Rail: 1 1 60B Scour Condition: N 1 1 1 1 1 1 1 1 1			0 Fwrd:	60A Substructure Condition: 7	
App. G. Rail: 1 1 60C Underwater Condition: N 71 Waterway Adequacy: 9 74 Pp. G. Rail: 1 75 Pp. G. Rail: 1 75 Pp. G. Rail: 1 75 Pp. G.	Hydraulic Data		36 Safety Features Br. Rail: 1		
Period P	215 Waterway Data		Transition:		
bed Elev.: 0000.0 Freq.: 00	Highwater Elev.:		App. G. Rail: 1		
Saminimum CLOver: Note: Note	Avg. Streambed Elev.	000000	1		
1	Drainage Area:	00011	66 . 66		
Section 1	Area Of Opening:	000975	. 00 N		
tion: 1 Posted Dir: 99 · 99 " 62 Culvert: N Oppo. Dir: 99 · 99 " 70 Bridge Posting Bata Rear: 0 Fwrd: 0 Posted Odm. Dir: 90 · 99 " 70 Bridge Posting Required: 5 Exer: 0 Posted Odm. Dir: 0 0 0 · 00 " 70 Bridge Posting Required: 5 Exer: 0 Oppo. Dir: 0 0 0 · 00 " 70 Bridge Posting Required: 5 Exer: 0 Oppo. Dir: 0 0 0 · 00 " 70 Bridge Posting Required: 5 Exer: 0 Oppo. Dir: 0 0 0 · 00 " 70 Bridge Posting Required: 5 Exer: 0 Oppo. Dir: 0 0 0	113 Scour Critical:	5	* 228 Min. Vertical Cl		
tion: 1 Posted Odm. Dir: 99 + 99 " Posted Odm. Dir: 00 0 0 0 0 70 0 70 Bridge Posting Required: 5 To Bridge Posting Required: 5 Lateral Underel. Rt: N 0.00	216 Water Depth:	Br. Height:	. 66		
Posted Odm. Dir. On 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	222 Slope Protection:	1	66 , 66		
Composition	221 Spur Dikes Rear:		n. Dir: 00 '	Posting Data	
er: 000	219 Fender System:	0	. 00		
er: 0000 * 103 Temporary Structure: 0 0	220 Dolphin:	0	Lateral Undercl. Rt: N		
* 10 Max Min Vert Cl: 99 ' 99 " Dir: 0 232 Posted Loads H-Modified: 00	223 Culvert Cover:	000	Lateral Undercl. Lt:	* 103 Temporary Structure: 0	
0.00 Height: 0.00 Horz: 0000 Horz	Type:	0 00	10 Max Min Vert Cl: 99 ' 99 " Dir:		
0 Apron: 0 I16 Nav Vert Cl Closed: 000 Type 3: 00 Timber: 00 Deck Thick Approach: 0.00 Piggyback: 00 Piggyback: 00 253 Notification Date 02/01/1901			Nav Vert CI: 000 Horz:	HS-Modified: 00	
rea: 0 Diver: ZZZ 245 Deck Thickness Main: 7.00 Timber: 00 Deck Thick Approach: 0.00 Piggsback: 00 246 Overlay Thickness: 0.00 253 Notification Date 02/01/1901	0	0	Nav Vert Cl Closed:	Type 3: 00	
Deck Thick Approach: 0.00 Piggyback: 00 246 Overlay Thickness: 0.00 253 Notification Date 02/01/1901 212 Year Last Painted: Sup: 1994 Sub: 0000		0 Diver. ZZZ	Deck Thickness Main:	Timber: 00	
246 Overlay Thickness: 0.00 253 Notification Date 02/01/1901 067-00401D-270.25N Octification Date 02/01/1901				Piggyback: 00	
The same and the s		-00401D-270.25N	Overlay Thickness: 0.00 Year Last Painted: Sup: 1994		

GEORGIA DEPARTMENT OF TRANSPORTATION

Bridge Inspection Report

District:

Location ID: Structure ID:

ridge Inspector:

Jerry Cooper

067-00401D-270.25N

067-0083-0

Inspection Date: 4/8/2009

Over: NOONDAY CREEK

County: Cobb

Road Name: I-75 (NBL)

EVALUATION & DEFICIENCIES

Year Painted: 0000

Year Painted: 1994

Inspection Area: 09

Bridge Status: 06

SubStructure:

Concrete Caps At Both Abutments, Founded On Steel H-Piles.

Minor cracking in both abutment caps.

Minor settlement at both abutments.

1 pile exposed at abutment 1 less than 1'.

Bent 2 And 3 Have Concrete Caps On 3 Concrete Columns, Founded On Spread Footings.

Very minor spalls on column 3 at bent 2.

Minor cracking bent 3, right side.

Bent #3 = H-37 Calculated 2004 by Central Office (Load Factor)

SuperStructure:

3 Span Steel Beam, (8 W36 X 194 Beams Per Span).

Square End Cover Plates, (Welded).

Minor section loss on various bearings, but all have been cleaned and painted.

Span #2 = H-44 Calculated 2004 by Central Office (Load Factor).

Deck:

7.0" Concrete Slab.

Minor transverse cracking on the top with some very minor cracking on the bottom.

The joint in the parapet at bents 2 and 3 are jammed.

Appears that the joint in the handrail was constructed smaller then the deck joint.

This condition caused the spall noted below).

Minor spall in the left outside handrail parapet at bent 3.

Inside at bent 2 crack spall.

Minor settlement of both approach slabs, overlaid with asphalt.

Deck: H-32 Calculated 2004 by Central Office (Load Factor).

General:

Built in 1975 Project # I-75-3 (40) 284CT. 5

This structure is in Good Condition with some minor cracking and spalls.

Hand tools and ladder used.

Calculations for this structure were determined by the Central Office. - February, 2004.

Condition Rating

Temp Shored: No

Component	Material	Rating
Substructure	Concrete	7
Superstructure	Steel	8
Deck	Concrete	7

Truck Type	Gross/H-Mod	HSMod	Tand	3-S-2	Log	Piggy
Calculated Posting	21	30	33	40	37	40
Posting Required	No	No	No	No	No	No
Existing Posting	00	00	00	00	00	00

Not a School Bus Route.

Structure Does Not Require Posting

Report Date: 8/10/2009

GEORGIA DEPARTMENT OF TRANSPORTATION

Deficiency Report

District:

Inspection Date: 4/8/2009

'ridge Inspector: Location ID:

Jerry Cooper

Over: NOONDAY CREEK

067-00401D-270.25N

Structure ID:

067-0083-0

County: Cobb Asst. District Engineer: Shun Pringle

EVALUATION & DEFICIENCIES

I-75 (NBL) Over NOONDAY CREEK-----2.5 MI E OF KENNESAW

Units

Work P Date Reported

Location

Date Completed

Inspection Area: 09

Complete

800 LIN. FT.

240 B 5/29/2001

12/14/2001

199.00

845 HOURS

20 B 3/15/2005

7/10/2007

*** 111.00

845 HOURS

56 B 3/21/2007

Comments:

Report Date: 8/10/2009 Def-

GEORGIA DEPARTMEN. OF TRANSPORTATION

Waterway Report

Inspection Date: 4/8/2009

Inspection Area: 09

Skew: 15

Over: NOONDAY CREEK County: Cobb

Road Name: 1-75 (NBL)

067-0083-0

7 Jerry Cooper 067-00401D-270.25N

Bridge Inspector:

District:

Location ID:

Structure ID:

3	81.5
2	82.0
-	81.5
Span #:	Length:

Upstream -

Upstream +		-	2	ю	4
08/18/1997 - BDH DEM	ВДН ДЕМ		23.80	26.00	6.10
04/20/1999	DEM		23.80	26.00	6.10
08/05/2003	JMC-WBR		24.00	26.00	00.9
03/15/2005 JMC-WBR	JMC-WBR		24.10	25.90	9.00
03/21/2007	JMC-WBR		24.40	26.20	00.9
04/08/2009	JMC-WBR		24.20	26.10	00'9

Downstream -

Downstream +	+	-	2	3	4
08/18/1997	BDH DEM		25.40	26.70	6.40
04/20/1999	DEM		25.40	26.70	6.40
08/05/2003	08/05/2003 JMC-WBR		25.50	26.80	6.50
03/15/2005	JMC-WBR		25.70	26.60	09.9
03/21/2007	JMC-WBR		26.20	26.50	09.9
04/08/2009	JMC-WBR		26.40	26.20	9.60

GEORGIA DEPARTMEN, OF TRANSPORTATION

Waterway Report

Inspection Date: 4/8/2009

Over: NOONDAY CREEK County: Cobb

067-00401D-270.25N Jerry Cooper

Bridge Inspector:

District:

067-0083-0

Structure ID: Location ID:

Road Name: 1-75 (NBL)

Inspection Area: 09

Skew: 15

30.8 02.2 32 23 25 21 27 ö

Side view at the Channel.

B, C, H, & I are measured to center of bent or B.F.P.R.

+ 28' from bent #2 Location of Bridge Height Waterway Adequacy:

Scour Condition:

6

Channel Protection:

0 = Channel Skew 15 = SubStructure

15 = Stream Angle

Comments:

Bridge is super elevated downstream side is the high side.

GEORGIA DEPARTMEN JF TRANSPORTATION

Bridge Component Report

Inspection Date: 4/8/2009 Over: NOONDAY CREEK

> Bridge Inspector: Jerry Cooper Location ID: 067-00401D-270.25N

District:

Structure ID: 067-0083-0

County: Cobb Road Name: 1-75 (NBL)

Inspection Area: 09

SubStructure Data

Remarks	CAP ON STEEL PILE			CAP ON STEEL PILE
CAP	С	C	C	C
Sway				
#Piles	0	0	0	0
Piling				
#Cols	0	3	33	0
Col		O	C	
Foundation	DP	SF	SF	DP
Type	A	В	В	A
Bent#	П	2	3	4

SuperStructure Data

Span#	Span# Beam Type	Spacing	Length	Length #Beams Remarks	
-	Steel Beams	8.50	81.50	8 W36 X 194	
2	Steel Beams	8.50	82.00	8 W36 X 194	
3	Steel Beams	8.50	81.50	8 W36 X 194	
				Bearing Data	ta
Span#	Rear Type Bearing	ŀ	FWD Type Bearing	ıring	Remarks
-	02 - Fixed Plate	0	01 - Sliding Plate	te	G00D
2	02 - Fixed Plate	0	01 - Sliding Plate	te	G00D
33	01 - Sliding Plate	0	02 - Fixed Plate	42	G00D

CALCULATION SHEET

PROJECT: <u>I-75 / I-575 NORTHWEST CORRIDOR</u>

JOB NUMBER <u>NH000-0073-03(242)</u>

CALC NO. BR#31

SUBJECT: Bridge Hydraulic Information SHEET NO. BY: JCR DATE: 11/30/2009 SHEET REV.

HYDRAULIC TABLE (50-YEAR STORM)

	UNCONSTRICTED SECTION	EXISTING CONDITIONS	PROPOSED CONDITIONS
FLOODSTAGE ELEVATION BRIDGE SECTION (ft)	941.30	941.59	941.59
FLOODSTAGE ELEVATION APPROACH SECTION (ft)*	946.57	947.06	947.06
AREA OF OPENING UNDER FLOODSTAGE (ft²)	*********	1382	1382
DISCHARGE THROUGH BRIDGE (cfs)	*********	6003	6003
DISCHARGE OVER ROADWAY (cfs)	*********	0	0
CHANNEL VELOCITY (f/s)	5.19	7.37	7.37
MEAN VELOCITY (f/s)	*********	4.34	4.34
2-YEAR FLOODSTAGE ELEVATION BRIDGE SECTION (ft)	937.06	937.19	937.19
BACKWATER HEIGHT (ft)	*********	0.49	0.49

^{*} Approach Section is located upstream of the southbound bridge (Section 1250).

HYDRAULIC TABLE (100-YEAR STORM)

	UNCONSTRICTED SECTION	EXISTING CONDITIONS	PROPOSED CONDITIONS
FLOODSTAGE ELEVATION BRIDGE SECTION (ft)	942.19	942.49	942.49
FLOODSTAGE ELEVATION APPROACH SECTION (ft)*	947.49	947.86	947.86
AREA OF OPENING UNDER FLOODSTAGE (ft²)	*********	1544	1544
DISCHARGE THROUGH BRIDGE (cfs)	*********	6889	6889
DISCHARGE OVER ROADWAY (cfs)	*********	0	0
CHANNEL VELOCITY (f/s)	5.27	7.76	7.76
MEAN VELOCITY (f/s)	*********	4.46	4.46
2-YEAR FLOODSTAGE ELEVATION BRIDGE SECTION (ft)	937.06	937.19	937.19
BACKWATER HEIGHT (ft)	********	0.37	0.37

^{*} Approach Section is located upstream of the southbound bridge (Section 1250).

HYDRAULIC TABLE (500-YEAR STORM)

	UNCONSTRICTED SECTION	EXISTING CONDITIONS	PROPOSED CONDITIONS	
FLOODSTAGE ELEVATION BRIDGE SECTION (ft)	944.02	944.33	944.33	
FLOODSTAGE ELEVATION APPROACH SECTION (ft)*	948.96	949.10	949.04	
AREA OF OPENING UNDER FLOODSTAGE (ft²)	•••••	1881	1881	
DISCHARGE THROUGH BRID (cfs)	GE ********	8519	8519	
DISCHARGE OVER ROADWA' (cfs)	γ	0	0	
CHANNEL VELOCITY (f/s)	5.18	8.18	8.18	
MEAN VELOCITY (f/s)	********	4.53	4.53	
2-YEAR FLOODSTAGE ELEVATION BRIDGE SECTION (ft)	937.06	937.19	937.19	
BACKWATER HEIGHT (ft)	********	0.14	0.08	

^{*} Approach Section is located upstream of the southbound bridge (Section 1250).

NH000-0073-03(242) Cobb County I-75 over Noonday Creek

Proposed widened bridges

MIN PROFILE GRADE ELEVATION	949.85	
DEPTH OF CROSS SLOPE	0.84	
DEPTH OF SLAB AND BEAM	5.06	
BOTTOM OF BEAM ELEVATION	943.95	
BOTTOM OF BEAM ELEVATION	943.93	
	0.42.07	
MINIMUM BOTTOM OF BEAM ELEVATION	943.95	
50 YEAR FLOODSTAGE ELEVATION*	941.59	_
GLE LIN LIVER	2.26	
CLEARANCE	2.36	
MINIMUM BOTTOM OF BEAM ELEVATION	943.95	
100 YEAR FLOODSTAGE ELEVATION*	942.49	4
CLEARANCE	1.46	
CLEARANCE	1.40	
*Floodstage taken from proposed conditions model.		